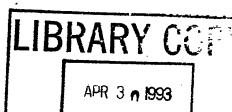


> 7 APR 1948

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1553


COMPRESSIVE STRENGTH OF 24S-T ALUMINUM-ALLOY FLAT PANELS
WITH LONGITUDINAL FORMED HAT-SECTION STIFFENERS HAVING
FOUR RATIOS OF STIFFENER THICKNESS TO SKIN THICKNESS

By William A. Hickman and Norris F. Dow

Langley Memorial Aeronautical Laboratory Langley Field, Va.

Washington March 1948

LANGLEY RESEARCH CENTER LIBRARY NASA HAMPTON, VIRGINIA

N A C A LIBRARY

LANGLEY MEMORIAL AERONAUTICAL
LABORATORY
Langley Field, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1553

COMPRESSIVE STRENGTH OF 24S-T ALUMINUM-ALLOY FLAT PANELS
WITH LONGITUDINAL FORMED HAT-SECTION STIFFENERS HAVING
FOUR RATIOS OF STIFFENER THICKNESS TO SKIN THICKNESS

By William A. Hickman and Norris F. Dow SUMMARY

Results are presented for a test program on 24S-T aluminum-alloy flat compression panels with longitudinal formed hat-section stiffeners. The results for panels in which the thicknesses of the stiffener material are 0.39 and 1.25 times the skin thickness are presented and incorporated with the results previously presented for panels in which the thicknesses of the stiffener material are 0.63 and 1.00 times the skin thickness. The results, presented in tabular and graphical form, show the effect of the relative dimensions of a panel on the buckling stress and the average stress at failure.

INTRODUCTION

An extensive experimental investigation of the strength of 24S-T aluminum—alloy flat compression panels with longitudinal formed Z—section stiffeners was reported in reference 1. The data presented in reference 1 were reworked on the basis of a selected design parameter and were used for the preparation of design charts in reference 2. A similar investigation is now being completed on panels of the same material with formed hat—section stiffeners in order to make design charts and also to provide an eventual comparison of the structural efficiencies of the two types of stiffener.

This compression—panel test program consisted of four parts. The first two parts, for which the thicknesses of the stiffener material were 0.63 and 1.00 times the skin thickness, were reported in references 3 and 4. The last two parts, for which the thicknesses of the stiffener material were 0.39 and 1.25 times the skin thickness, have now been completed and are presented herein with the results of the first two parts.

The present paper deals only with the data as obtained; no attempt has yet been made to prepare design charts from these data.

SYMBOLS

Symbols for dimensions of panel cross sections are shown in figure 1. In addition, the following symbols are used:

$\mathtt{P_i}$	compressive load per inch of panel width, kips per inch
ŧ	cross-sectional area per inch of panel width, expressed as an equivalent or average thickness, inches
L	length of panel, inches
С	coefficient of end fixity in Euler column formula

 $\sigma_{\rm cr}$ local-buckling stress of skin or stiffener, ksi

 $\overline{\sigma}_{p}$ average stress at failure, ksi

TEST SPECIMENS

A typical cross section of the test panels is shown in figure 1. Both the skin and the stiffeners were made of 24S-T aluminum-alloy sheet with the grain of the material parallel to the longitudinal axis of the panels. The with-grain compressive yield strength of the skin material ranged between 42.2 ksi and 47.9 ksi with an average of 43.8 ksi and that of the stiffener material before forming varied between 41.9 ksi and 46.2 ksi with an average of 44.3 ksi.

For the tests reported herein, the nominal thicknesses of the skin material were 0.102 inch, 0.064 inch, 0.040 inch, and 0.032 inch and the nominal stiffener thickness was 0.040 inch. The nominal ratios of the stiffener thickness to the skin thickness t_W/t_S were therefore constant, the values being 0.39, 0.63, 1.00, and 1.25, respectively. With these dimensions known, numerical values for all other cross-sectional dimensions can be found by means of the proper dimension ratios. The stiffeners were formed from flat sheet to an inside radius of 0.125 inch for all bends $\begin{pmatrix} r_A \approx \\ t_W \approx \end{pmatrix}$. For panels having $\frac{t_W}{t_S} = 0.39$, 0.63, 1.00, and 1.25, the widths of the attachment flange b_A were 0.85 inch, 0.75 inch, 0.65 inch, and 0.55 inch, respectively. The rivet lines on the stiffeners were on the longitudinal center lines of the attachment flanges.

The NACA flush-riveting method (method E of reference 5) was employed in the construction of the test specimens. The rivet holes were countersunk on the skin side of the panel to a depth of three-fourths of the skin thickness, the countersink having an included angle of 60° . Ordinary flat-head Al7S-T aluminum-alloy rivets were inserted from the

stiffener side, and the shanks were upset into the countersunk cavity. The protruding part of the upset shank was then milled off to provide a smooth surface. The rivet diameters and rivet pitches used are shown in the following table:

t _W /t _S	Rivet diameter (in.)	Rivet pitch (in.)
0.39	3/16	1
.63	5/32	3/4
1.00	1/8	1/2
1.25	3/32	3/8

METHOD OF TESTING

The specimens were tested flat-ended, without side support, in the 1,200,000-pound-capacity testing machine at the Langley structures research laboratory. Within the range of loads used, the indicated load on the testing machine was within one-half of 1 percent of the applied load. Provisions were made for setting the specimens in the testing machine in such a manner as to maintain the flatness of the panels and afford uniform bearing at the ends. Figure 2 shows a failed panel in the testing machine.

Resistance—type wire strain gages were used to measure strains at successive increments of load. The gages were placed in those locations on the stiffeners and skin where buckles were expected to appear first.

METHODS OF TREATING TEST DATA

In reference 6, the coefficient of end fixity c was found to be about 3.75 for panels which were tested flat-ended in the same testing machine used in the present investigation. Because the panels of this investigation are similar to the panels of reference 6, this value of c was used in working up the present data.

In order to obtain the average stress at failure σ_f , the load at which failure occurred was divided by the cross-sectional area of the panel. No adjustment was made to offset the effect of having an unequal number of stiffeners and bays. The effect of such an adjustment would

be to decrease slightly the values of $\overline{\sigma}_f$ at high values of $\frac{bg}{tg}$ and $\frac{P_1}{L/\sqrt{c}}$. Inasmuch as the purpose of the present paper is to present test data, however, and not to prepare final design charts, the adjustment was considered unwarranted.

The local buckling load was determined by the "strain-reversal method" (see reference 7) as the load at which a plot of the strains near the crest of a buckle first shows a decreasing strain with increasing load. The buckling load was divided by the cross-sectional area of the panel to give the observed buckling stress. An adjustment was made in the observed buckling stress to correct for slight variations of the actual dimensions from the nominal dimensions of the specimens. The method for making the adjustment is explained in the appendix of reference 3.

Because stresses are determined by the relative rather than by the absolute dimensions of the panels, nondimensional ratios are used in presenting the data. In reference 2 the quantity $\frac{P_1}{L/\sqrt{c}}$ is developed as a suitable parameter against which to plot the average stress at maximum load. This parameter is used in plotting the results of the tests in the present investigation.

RESULTS AND CONCLUSIONS

The primary results of this investigation are to be found in tables 1 to 16 and figures 3 to 18.

Tables 1 to 16 (facing figs. 3 to 18, respectively) list both the observed and the adjusted buckling stresses, together with the average stress at failure, for corresponding values of $\frac{P_1}{L/\sqrt{c}}$. The nominal values of $\frac{P_2}{L/\sqrt{c}}$ are included in the tables for convenience in making comparisons with other panels. Values of L/\sqrt{c} are also given.

In figures 3 to 18 the average stress at failure σ_f is plotted against $\frac{P_1}{L/\sqrt{c}}$ for the various dimension ratios used. The initial dashed parts of the curves were computed from the column strength of the panels based on nominal dimensions and the combination of Euler and straight—line column curves recommended for 24S—T aluminum—alloy material in reference 8; the solid—line parts of the curves were drawn through the experimental test points.

The following conclusions may be drawn regarding the effect of the various dimension ratios on the strength of the test panels. It is

NACA TN No. 1553

assumed that as each dimension ratio is changed all others remain constant. These conclusions can only be considered to apply within the range of panels tested.

- l. At very low values of $\frac{P_1}{L/V_C}$ (long panels that fail by column bending), the stress developed by the panels increases with an increase in bw/tw because an increase in the height of the stiffeners provides increased column strength. For high values of $\frac{P_1}{L/V_C}$ (short panels that fail by local buckling), however, the stress generally decreases as bw/tw increases because an increase in the height of the stiffeners decreases the local-buckling strength.
- 2. At very high values of $\frac{P_1}{L/\sqrt{c}}$ (short panels that fail by local buckling), an increase in the ratio b_H/t_W tends to decrease the stress developed by the panels because an increase in the width of the stiffeners tends to decrease the local-buckling strength.
- 3. Except at very low values of $\frac{P_i}{L/\sqrt{c}}$ (long panels that fail by column bending), the stress developed by the test panels tends to increase as b_S/t_S is decreased because a decrease in the stiffener spacing increases the local-buckling strength.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., February 2, 1948

REFERENCES

- 1. Rossman, Carl A., Bartone, Leonard M., and Dobrowski, Charles V.: Compressive Strength of Flat Panels with Z-Section Stiffeners. NACA ARR No. 4B03, 1944.
- 2. Schuette, Evan H.: Charts for the Minimum-Weight Design of 24S-T Aluminum-Alloy Flat Compression Panels with Longitudinal Z-Section Stiffeners. NACA ARR No. L5F15, 1945.
 - 3. Schuette, Evan H., Barab, Saul, and McCracken, Howard L.:

 Compressive Strength of 24S-T Aluminum-Alloy Flat Panels with
 Longitudinal Formed Hat-Section Stiffeners. NACA TN
 No. 1157, 1946.
 - 4. Hickman, William A., and Dow, Norris F.: Compressive Strength of 24S-T Aluminum-Alloy Flat Panels with Longitudinal Formed Hat-Section Stiffeners Having a Ratio of Stiffener Thickness to Skin Thickness Equal to 1.00. NACA TN No. 1439, 1947.
 - 5. Lundquist, Eugene E., and Gottlieb, Robert: A Study of the Tightness and Flushness of Machine-Countersunk Rivets for Aircraft. NACA RB, June 1942.
 - 6. Schuette, Evan H., and Roy, J. Albert: The Determination of Effective Column Length from Strain Measurements. NACA ARR No. L4F24, 1944.
- 7. Hu, Pai C., Lundquist, Eugene E., and Batdorf, S. B.: Effect of Small Deviations from Flatness on Effective Width and Buckling of Plates in Compression. NACA TN No. 1124, 1946.
- 8. Templin, R. L., Sturm, R. G., Hartmann, E. C., and Holt, M.: Column Strength of Various Aluminum Alloys. Tech. Paper No. 1, Aluminum Res. Lab., ALCOA, 1938.

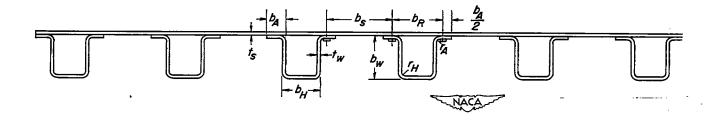


Figure I. - Cross section of a test panel.

-				
		,		
		·		
, ,	•	•	• ,	•

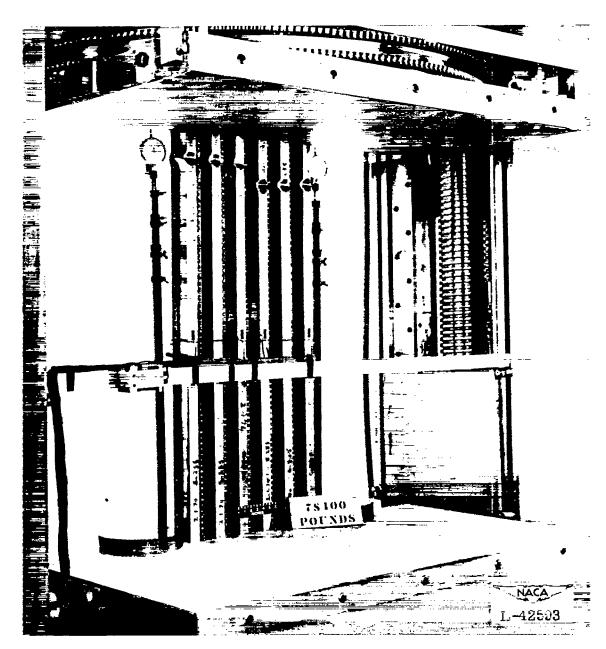


Figure 2.- Panel after failure.

TABLE 1 TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{t_W}{t_B} = 0.39$, $\frac{b_H}{b_W} = 0.6$ [Nominal proportions are given in parentheses]

	Pr	oportions	of test	specimen	18			Test d	ata	
t _W	t _₩	bs ts	b₩ €₩	ρ Λ ρΗ	L √c (in.)	ī.	i	er si/ Adjusted	ਰ _ਿ (ksi)	P ₁ L/YC (ks1)
(0.040) 0.040 039 .040	(0.39) 0.392 .384 .386 .389	(25) 25.1 23.8 24.0 24.1	(20) 19.9 20.3 19.9 20.0	(0.6) 0.60 .61 .61	3.14 5.25 5.40 12.53	(1.349)	31.3 31.2	29.6 28.6 	33.7 33.0 29.6 19.5	1.474 .859 .#56 .217
.039 .039 .040 .040	.375 .376 .374 .382	24.0 23.4 24.0	30.6 30.6 30.6 30.2 30.5	.59 .60 .60	5.31 6.90 14.26 21.35	(1.430)	31.7 14.3	33.0 15.4	33.2 32.4 31.0 15.5	.911 .530 .317 .106
.039 .040 .040 .040	.375 .381 .381 .363	23.9 23.6 23.8 23.8	5555 0 4 4 4 9 4 9 4 9 9 9 9 9 9 9 9 9 9 9 9	.60 .60 .60	7.67 12.85 20.51 30.76	(1.499)	25.0 27.2	27.0 27.7	30.7 26.8 29.4 21.4	.611 .343 .219 .106
.039 .040 .039 .040	.378 .350 .374 .376	23.8 24.0 24.6 23.5	(60) 61.3 60.7 61.2 50,6	.60 .61 .60 .60	12.53 20.98 33.48 50.25	(1,621)	14.9 13.1 14.4 13.0	15.6 13.7 14.9 13.3	25.2 24.3 24.1 16.8	.333 .191 .119 .055
.039 .039 .039	.393 .394 .393 .393	(35) 35.5 35.0 34.8 34.5	(20) 20.3 19.7 20.4 19.8	.64 .64 .64	2.93 4.63 7.69 11.62	(1.275)	26.0 23.3 23.5	26.6 23.3 23.3	31.3 30.2 26.5 16.1	1.391 .813 .447 .150
.039 .039 .039 .038	.350 .352 .379 .350	34.5 34.0 34.2 34.7	(30) 30.2 30.2 31.0 31.4	.60 .58 .58	4.98 8.36 13.33 19.96	(1.342)	24.6 24.1 25.6	22.9 23.1 24.9	29.9 29.1 27.6 19.7	.821 .476 .284 .135
.039 .040 .039 .040	.391 .392 .379 .393	35.0 35.6 34.5	40.4 40.4 40.8 40.4	.58 .60 .60	7.25 12.05 19.33 26.99	(1.404)	25.8 26.8 25.8 20.3	27.2 27.0 28.0 23.7	27.1 27.0 26.8 21.2	.535 .321 .198 .105
.040 .039 .040 .040	.355 .355 .352 .359	34.4 34.4 33.6 34.2	(60) 60.9 60.2 60.2	.60 .60 .60	5.01 8.35 13.35 20.07	(1.510)	14.0 14.5 13.6 12.9	14.4 14.6 13.6 13.0	22.3 22.0 21.3 17.2	.284 .169 .103 .055
.040 .039 .039 .039	.382 .380 .364 .364	(50) 45.7 45.5 45.5	(20) 20.0 20.0 20.4 20.4	.63 .60 .60	2.72 4.46 7.02 10.58	(1.205)	22.3 15.7 13.3 14.2	26.0 15.1 12.7 13.8	27.3 26.4 23.9 17.6	1.238 .730 .419 .205
.039 .039 .039 .039	.396 .396 .394 .381	51.0 50.7 49.8 48.6	(30) 30.8 30.3 30.4 30.5 (40)	.60 .62 .62	4.59 7.64 12.17 18.37	(1.262)	14.7 14.4 14.4 15.7	15.4 14.8 14.3 14.8	26.1 25.0 24.0 17.5	.733 .421 .254 .123
.039 .039 .040 .040	.399 .396 .398 .398	51.0 50.4 50.0	40.6 40.7 40.1	.60 .60 .60 .60	6.72 11.20 17.94 26.82	(2.313)	14.3 13.4 15.9 13.7	14.9 13.9 16.1 13.7	24.6 23.6 23.5 20.9	.490 .282 .176 .104
.040 .039 .039 .040	. 389 . 387 . 388 . 387	49.3 49.2 49.5 49.4	60.2 61.7 61.0 60.7	.61 .60 .60 .60	11.34 16.57 30.12 45.25	(1.404)	13.5 15.5 14.4 12.4	13.9 16.7 14.9 12.7	20.4 20.7 18.8 16.8	.25# .157 .089 .053
.039 .039 .039 .039	.379 .379 .376 .382	(75) 73.5 73.8 73.8	(20) 20.0 20.4 19.6 19.9	.61 .63 .62	2.35 3.87 6.16 9.33	(1.146)	17.1 11.3 7.8 5.6	16.7 10.5 7.4 5.5	22.4 20.8 17.2 14.6	1.115 .628 .327 .164
.040 .039 .040 .040	.386 .380 .382 .380	73.6 73.0 72.4 72.0	(30) 30.5 30.3 30.0 (40)	.60 .60 .58 .61	4.09 6.71 10.84 16.27	(1.189)	13.4 8.6 8.0 7.5	12.9 5 .1 7.5 6.9	22.9 22.0 20.4 18.0	.678 .397 .228 .134
.040 .040 .040	.398 .394 .379 .382	76.2 74.8 72.4 72.8	41.0 39.0 39.2 40.1	.60 .60 .60	6.11 10.03 16.01 24.15	(1,229)	7.5 7.2 8.6 7.8	5.1 7.1 5.0 7.4	20.6 21.0 21.1 15.9	.421 .262 .165
.039 .039 .046 .046	378 390 467 452	75.4 75.6 75.6	(60) 60.4 61.0 52.5 52.5	.62 .59 .60 .60	10.34 17.24 27.59 41.46	(1.299)	5.6 6.5 6.5 5.2	8.2 6.9 7.0 8.4	15.5 19.0 20.1 15.3	.241 .146 .097 .058

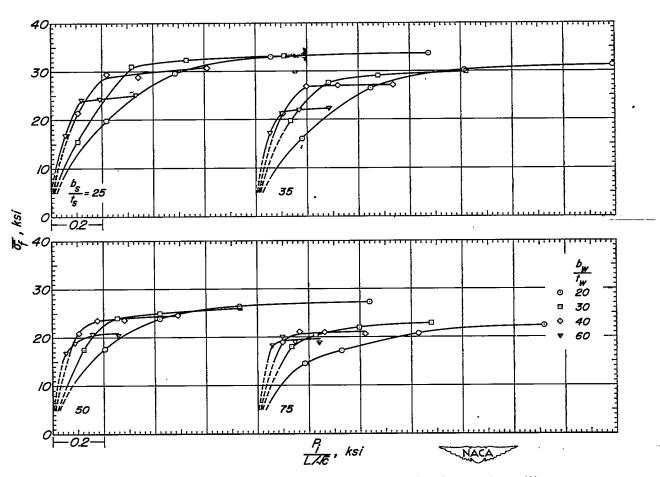


Figure 3.—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 0.39; \ \frac{b_H}{b_W} = 0.6.$

TABLE 2

TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{t_W}{t_S} = 0.39$, $\frac{b_H}{b_W} = 0.8$ [Hominal proportions are given in parentheses]

	Pr	oportions	of test	specimen				Test d	a ta	
t _w	t _w ts	bs ts	Þ _R ₩	PM H q	<u>L</u> √6 (in.)	ŧ.		cr si) Adjusted	ਰ _ਵ (ksi)	P ₁ L/V6 (kal)
(0.040) 040 040 040	(0.39) 386 387 388 388	(25) 인천 사람 전 사람 사람	(20) 19.8 20.1 20.0 19.8	(0.8) .82 .81 .82 .81	3.32 5.58 8.90 13.32	(1.350)	29.9 30.8 29.8	31.6 28.5 28.3	34-2 32.8 30.5 19.3	1.418 .809 .472 .200
.039 .040 .039 .039	. 576 . 572 . 576 . 572	23.448 23.48 23.48	30.4 30.4 30.4 30.4	.81 .81 .80 .79	5.68 9.35 14.97 22.38	(1.428)	28.1 18.0	29.1 18.7	51.6 52.2 51.4 18.9	.810 .501 .305 .125
000 000 000 010	. 586 . 584 . 582 . 584	진 . 2 전 . 2 전 . 2 전 . 2	(10) 10.6 10.6 10.6	.80 .80 .80	8.04 13.42 21.43 32.09	(1.493)	27.6	28.h	29.5 29.2 28.4 22.1	.554 .352 .201 .105
.039 .039 .040 .040	. 381 . 378 . 388 . 386	전 .0 25 .5 25 .5 24 .4	61.0 61.0 60.6 59.5	.82 .80 .80 .81	13.04 21.66 34.62 52.05	(1.598)	11.5 12.6 14.6 12.6	11.9 12.8 14.7 12.9	22.8 23.5 22.3 15.5	.285 .177 .105 .049
059 059 039	. 391 . 394 . 398 . 388	(35) 34.7 35.0 35.2	(20) 20.5 20.2 20.7 20.6	.82 .81 .78 .79	3.01 5.16 8.16 12.33	(1.280)	25.33 24.2	8.7.48 27.41	30.6 29.0 28.6 18.0	1.327 .733 .457 .190
.039 .038 .039	.390 .380 .388	35.4 35.5 34.4 35.6	(30) 30.4 30.9 30.8 31.1	.82 .90 .78 .79	5.20 6.84 14.02 21.06	(1.45)	23.8 22.9 23.9	건4.2 22.0 건4.7	29.2 27.5 27.5 20.6	.769 .428 .269 .134
.039 .039 .039 .040	•390 •390 •388 •395	34.8 35.0 34.9 35.0	(40) 40.9 41.4 40.5	.78 .80 .79 .86	7.58 12.62 20.26 30.28	(1.403)	23.9 22.4 	25.7 22.6	24.7 26.4 25.2 22.9	.466 .300 .178 .108
.039 .038 .039	. 380 . 370 . 379 . 397	33.7 33.8 35.8 35.0	(60) 60.6 62.0 60.8 61.0	.80 .80 .81 .80	12.45 20.83 33.31 49.35	(1.502)	14.5 14.8 12.6 11.9	14.8 16.0 13.4 12.3	21.8 21.9 20.7 15.1	.268 .161 .095 .047
.010 .039 .010 .039	.39.55 .39.66 .39.66 .39.66	(50) 50.3 51.2 49.0	(20) 19.8 20.6 20.6 20.2	.85 .78 .78 .82	2.80 4.76 7.49 11.27	(1.213)	21.1 15.3 16.0 13.8	21.5 16.1 15.5 14.7	29.9 25.6 25.0 18.2	1.323 .665 .380 .200
.039 .040 .039 .040	. 385 . 397 . 385 . 394	49.7 50.4 49.6	(30) 30.6 30.1 30.9 30.0	.80 .80 .80	4.82 8.07 12.94 19.41	(1.267)	18.2 13.8 15.9 15.6	18.0 13.8 15.5 15.4	25.8 24.5 24.4 18.1	.691 .388 .244 .120
.039 .040 .039 .040	.397 .408 .398 .400	50.6 51.9 50.9 50.1	(40) 40.5 39.8 40.8 40.0	.79 .80 .80 .80	7.08 11.80 13.86 28.33	(1.318)	15.4 12.8 14.1 15.1	15.8 13.8 14.6 15.2	23.7 23.5 22.6 18.2	.148 .268 .162 .086
.039 .040 .040 .040	- 381 - 381 - 381 - 380	48.6 48.2 48.2	60.6 60.6 59.8 60.6	.80 .80 .82 .82	11.83 19.74 31.52 47.23	(1.403)	14.7 13.0 12.9 11.9	15.3 13.2 12.8 12.1	19.8 19.7 18.4 15.5	.240 .243 .085 .057
.039 .039 .039 .039	. 382 . 380 . 380 . 380	(75) 73.8 74.2 74.0 74.4	(20) 20.2 20.6 20.2 20.6	.80 .80 .82	2.56 4.16 6.64 9.97	(1.153)	12.7 10.6 8.5 9.0	12.3 10.4 8.3 9.0	22.1 21.8 20.1 11.0	1.017 .616 .555 .129
.040 .040 .040	. 582 . 380 . 378 . 390	73.2 73.6 72.6 75.4	(30) 30.5 31.2 30.7 29.9	.78 .76 .78 .82	4.25 7.22 11.57 17.32	(1.194)	10.6 9.8 7.9 7.0	10.1 9.4 7.4 7.0	24.3 22.4 21.2 17.3	.700 .377 .223 .122
• Offo • Offo • Offo	. 382 . 374 . 382 . 417	72.9 72.2 72.4 72.6	40.6 40.5 39.8 37.2	.79 .79 .80 .78	6.45 10.72 16.90 25.59	(1.233)	7.4 8.4 6.6 7.9	6.9 7.8 6.1 7.4	21.0 21.2 21.1 19.0	.410 .249 .157 .094
.010 .011 .011 .011	•393 •387 •397 •412	73.9 73.3 74.4 75.8	(60) 59.3 60.0 59.4 57.6	.79 .80 .80 .80	10.83 18.18 28.06 43.38	(1.304)	6.7 7.8 6.6 7.4	6.5 7.5 7.5	18.0 19.2 18.2 15.3	.221 .141 .086 .047

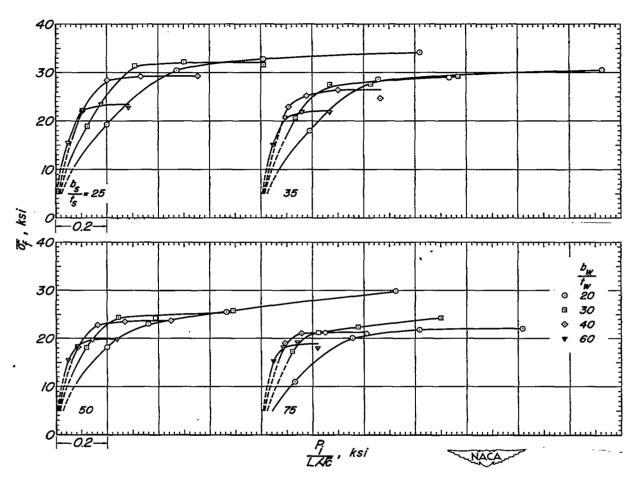


Figure 4.—Compressive strength of flat panels with hat-section stiffeners. $\frac{f_W}{f_S} = 0.39; \ \frac{b_H}{b_W} = 0.8.$

TABLE 3

TEST DATA FOR FIAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{t_W}{t_S} = 0.59$, $\frac{b_W}{b_W} = 1.0$ [Nominal proportions are given in parentheses]

(in.)										
	t _W	<u>£3</u>	b _W	₽Ħ PH		ŧ _s	0	si)	4 -	P ₁ 1/76 (ks1)
.010 .010	(0.39) -374 -374 -376 -383	23.3	20.1 20.2 19.7 19.8	1.00	3.54 5.70 9.28 13.91	(1.351)		29.3	30.0	1.541 .825 .445 .185
.039	.378 .382 .360	25.7 23.8 24.1 24.3	30.0 30.4 30.7 30.6	1.00	5.82 9.74 15.55 23.29	(1.424)	29.7 30.4 	30.1 50.8 	31.6 31.1 30.4 21.8	.789 .464 .284 .156
.010	. 388 . 385 . 386	1 24.2	40.3 39.8 40.0 40.5	1.00	8.31 13.88 22.10 33.15	(1,486)	22.9	22.9	1 28.6	.519 .512 .175 .100
010	• 374 • 378 • 374 • 377		60.4 60.2 60.2	1 1.01	13.35 22.31 35.62 53.40	(1.582)	11.5 11.5 11.5 10.4	11.9	22.7 22.2 20.5 14.4	.274 .160 .093 .044
.039	.386 .384 .404 .376	(35) 355.35 35.35 35.35	20.4 20.6 20.1 20.0	1.00	3.18 5.14 8.64 13.03	(1.281)		23.6	32.7 28.3 28.8 19.0	1.345 .680 .436 .190
.039 .039 .039	.391 .391 .390 .386	35.4 34.7 34.0	30.2 30.7 30.8 31.1	1.02 .99 .98 1.00	5.52 9.21 14.64 21.99	(1.头7)	22.0 23.5 24.5 20.9	22.l4 23.2 24.3 20.7	27.5	.709 .410 .248 .133
.039 .039 .039 .040	. 378 . 380 . 372 . 381	34.4 33.8 33.7 33.6	41.8 41.8 41.5	1.00	7.90 15.19 21.06 31.58	(1.403)	24.5 23.0 23.2 18.4	25.1 23.6 24.5 18.6	25.6 24.9 24.4 19.7	.464 .27¢ .166 .089
.039 [.390 .379 .382 .381	34.2	60.8 61.6 60.6 61.4	1.00	12.82 21.44 34.31 51.36	(2.495)	12.6	13.2	20.3 19.6	.250 .144 .667 .043
.040	.396 .382 .402 .404	50.9 49.0 50.4	20.2 20.4 20.0 20.2	.98 1.00	3.00 4.94 7.91 11.82	(1.217)	17.9 14.9	17.2 15.2	28.3 25.5 24.7 19.3	1.175 .642 .587 .203
.039 .039 .040 .039	.400	51.4 51.2 51.1 48.7	30.4 30.4 30.1	1.00	8.51 13.61	(1.272)	16.3 14.5 16.4 16.2	15.2 17.1	24.7 24.1 24.3	.624 .367 .231 .134
.040 .039 .039 .039	.404 .402 .399 .393	51.2 51.4 51.1 51.0	(40) 40.3 40.2 40.8	1.00 1.00 1.02 -99	7.41 12.27 19.70 29.54	(1.320)	13.9 16.5 13.8 14.0	14.6 17.5 14.6	23.4 22.7 22.7 16.4	. 121, 21,5 155 . 084
.040 .040 .040 .039	- 388 - 388 - 385 - 384	49•4 49•4 49•2 49•4	(60) 60.4 60.7 60.6 60.8	1.00 1.00 1.00 1.00	12.2h 20.36 32.53 48.77	(1.403)	11.6 10.9 10.0 10.8	11.8 11.2 10.4 11.2	18.9 18.5 16.4 14.9	.221 .130 .072 .044
.039 .039 .039	. 380 . 380 . 380 . 382	(75) 73.6 74.1 73.7 73.6	20.4 20.4 20.6 20.2 20.0	.99 .99 1.00 .99	2.68 4.38 7.09 10.59	(1.157)	13.4 9.4 9.8 8.8	12.9 9.2 8.7 8.5	22.2 24.1 20.0 11.4	. 978 . 650 . 554 . 127
.010 .010 .010 .010	. 582 . 583 . 381 . 378	72.4 72.9 73.4 73.0	(30) 29.6 30.2 30.2 30.8	.96 .99 1.00 .99	4.54 7.60 12.17 18.21	(1.200)	10.5 9.4 7.3 6.8	9.8 8.9 7.0 8.4	23.9 22.1 21.0 10.0	.643 .356 .212 .121
.039 .044 .044	.390 .418 .417 .450	75.2 72.4 72.8 77.8	(40) 40.6 36.5 37.4 36.5	.99 .99 .98 1.00	6.70 11.16 17.70 26.80	(1.238)	8.8 8.8 7.9 8.0	8.9 8.2 7.5 8.7	20.8 22.1 21.6 18.7	.392 .250 .15k .088
.010 .010 .010 .010	.379 .380 .398 .400	73.2 72.4 76.8 76.4	(60) 61.2 60.0 60.5 59.8	1.00 1.00 1.00 1.00	11.34 18.87 30.15 45.19	(1.309)	8.8 6.9 7.8 7.9	8.3 6.4 8.2 8.2	18.5 18.4 17.6 14.2	.218 .130 .078 .042

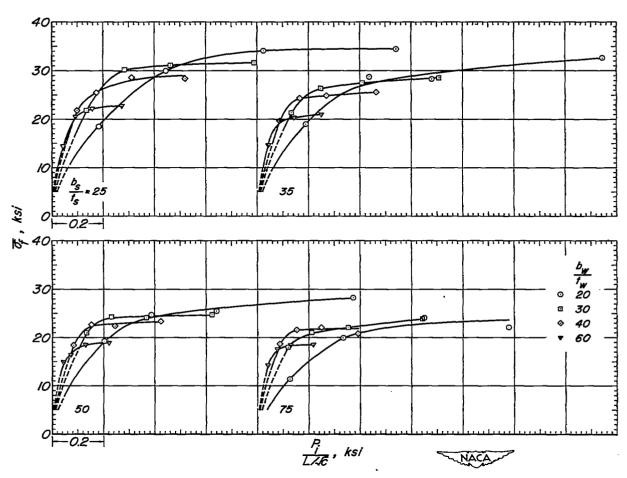


Figure 5.—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 0.39; \; \frac{b_H}{b_W} = 1.0 \; .$

TABLE 1. TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{t_W}{t_B} = 0.39$, $\frac{b_H}{b_W} = 1.2$ [Kominal proportions are given in parentheses]

	Proportions of test specimens Test data											
		T	T	1		T	+		1			
t _w	t ₈	t _S	b _W tw	p <u>M</u> pH	\(\frac{\ta.}{\ta}\)	E Eg		cr kei) Adjusted	- σ _r	P ₁ L/y6		
.040 .040 .040 .040	(0.39) .376 .376 .376 .378	(25) 23.5 23.0 23.3 23.4	(20) 20.1 20.0 19.8 20.2	(1.2) 1.20 1.21 1.20 1.19	3.66 6.06 9.63	(1.353)	31.8 30.3 29.4	32.8 26.5 26.4	35.8 32.6 30.7 19.8	1.274 .743 .440 .188		
.040 .039 .039 .039	. 377 . 384 . 382 . 384	25.8 일, 3 일, 1 일, 1 일, 7	(30) 30.4 30.5 30.6 31.0	1.19 1.20 1.20 1.19		(1.423)	28.6 28.5 20.4	26.5 23.6 21.7	30.7 29.9 29.7 20.9	.749 .451 .268		
.040 .040 .059 .059	.380 .382 .378 .381	킨; .0 23 .6 21 .1; 21 .1;	(40) 40.2 40.8 40.6	1.19 1.20 1.20 1.20	8.57 14.25 22.79 34.14	(1.479)	19.5 20.6 23.1 18.9	19.4 20.8 24.1 19.5	27.8 27.4 26.4 19.6	.190 .290 .175		
.039 .040 .039 .039	•371 •376 •390 •372	25.6 25.4 25.0 24.0	(60) 61.3 59.8 61.0 61.8	1.20 1.22 1.20 1.20	13.17 22.77 36.41 54.69	(1.568)	8.0 7.1 8.8 8.8	8.4 7.3 9.2 9.3	20.5 21.3 19.6 14.0	.246 .150 .086 .041		
.039 .039 .039 .039	.388 .388 .387 .389	(35) 35.4 34.9 35.0 34.7	(20) 20.4 20.5 20.3 19.5	1.20 1.22 1.20 1.30	3.34 5.61 9.05 13.55	(1.286)	26.9 24.2 23.2	29.5 24.0 23.3	30.1 29.3 26.4 19.8	1.182 .685 .382 .191		
.039 .039 .039	.391 .392 .391 .386	35.0 35.0 34.9 34.4	(30) 30.4 30.5 30.7 30.8	1.22 1.18 1.18 1.22	5.68 9.46 15.17 22.81	(1.348)	22.5 24.2 23.5 20.0	22.7 24.3 23.5 19.3	27.3 26.8 26.0 20.9	.660 .390 .236 .126		
.039 .040 .038 .040	•378 •390 •369 •386	33.4 34.7 33.9 33.7	(40) 40.8 40.2 41.6 40.1	1.20 1.20 1.17 1.20	8.23 13.56 21.69 32.58	(1.402)	17.7 21.8 20.1 16.0	18.4 22.0 20.8 16.0	건9 건3 건나1 17.8	.433 .256 .159 .078		
.040 .040 .040 .039	. 383 • 393 • 394 • 391	35.2 35.2 35.2	60.4 59.8 60.0 60.6	1.20 1.20 1.22 1.22	13.20 21.93 35.20 52.78	(1.487)	8. <i>6</i> 9.9 8.2	8.7 9.7 8.6	20.1 19.3 19.6 14.0	.251 .154 .084		
.039 .039 .040 .039	. 394 . 383 . 398 . 392	(50) 50.5 49.1 50.8 50.0	20.3 20.4 20.4 20.4	1.20 1.20 1.18 1.18	5.15 5.14 8.28 12.41	(1.221)	20.2 17.9 14.4 16.0	20.6 17.3 14.8 16.0	27.0 25.1 25.4 20.0	1.067 .609 .352 .201		
.039 .040 .040 .039	. 384 . 386 . 380 . 384	49.8 49.2 48.8	(30) 30.9 30.3 30.4 30.3 (40)	1.18 1.20 1.20 1.20	5.30 8.86 14.11 21.15	(1.276)	16.3 16.0 14.4 15.8	16.1 15.5 15.4 15.1	24.8 23.2 23.6 21.8	.608 .341 .218 .134		
.040 .039 .040 .039	• 392 • 380 • 384 • 378	49.7 49.0 48.8 48.7	40.3 41.0 40.4 40.5	1.20 1.20 1.20 1.22	7.65 12.78 20.35 30.56	(1.322)	14.0 15.7 15.0 15.0	14.2 15.1 14.3 14.2	21.6 21.7 21.1 16.4	.582 .229 .140		
.040 .040 .039 .039	.386 .386 .380 .382	48.6 48.8 49.0 49.4	60.0 60.8 60.8 60.1	1.21 1.20 1.21 1.22	12.58 20.91 33.52 50.23	(1.402)	7.4 8.0 7.8 8.0	7.5 8.2 8.4	18.2 17.6 16.8 14.0	.206 .120 .072 .040		
.059 .040 .040 .040	.382 .385 .382 .393	(75) 73.4 73.5 73.0 75.2	(20) 20.4 20.0 20.0 20.6	1.21 1.21 1.20 1.18	2.83 4.65 7.36 11.06	(1.161)	14.0 11.5 9.9 9.9	13.4 11.1 9.4 9.9	21.0 22.0 20.9 16.2	.877 .562 .336 .173		
.040 .040 .040 .039	.379 .378 .385 .374	72.7 72.6 74.0 73.2	(50) 29.6 30.1 30.8 29.8	1.21 1.20 1.18 1.22	4.79 7.88 12.65 12.06	(1.204)	11.2 9.1 8.6 8.5	10.6 8.6 6.1 8.1	22.4 22.5 19.7 17.9	.574 .551 .191 .115		
.0145 .0145 .0144	-458 -436 -448 -454	75.4 74.4 75.2 77.9	(40) 36.4 36.0 35.4 35.8 (60)	1.19 1.19 1.19 1.20	6.99 11.61 18.62 27.73	(1.243)	7.9 8.1 7.0 7.4	8.0 8.0 7.0 7.9	21.k 21.8 21.0 18.2	.587 .239 .165 .083		
.041 .040 .041 .041	.385 .382 .385 .404	72.8 72.4 72.8 76.3	58.2 59.2 58.9 58.8	1.20 1.20 1.20 1.20	11.70 19.45 31.15 46.66	(1.311)	6.4 7.8 7.6	6.0 6.9 7.8	17.1 18.6 17.3 13.9	. 196 . 128 . 074 . 040		

-WACA-

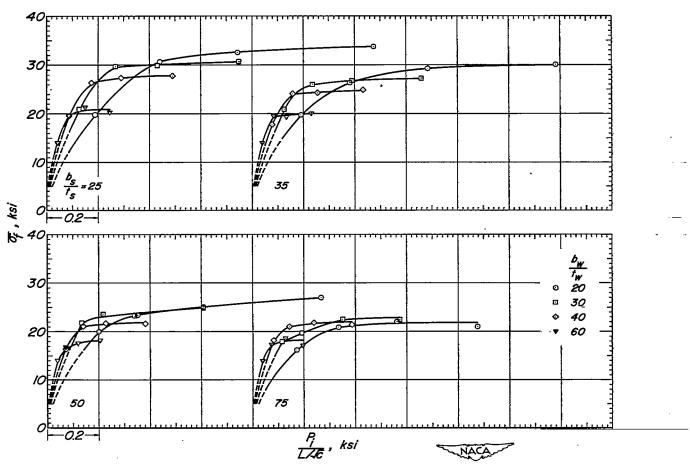


Figure 6.—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 0.39; \; \frac{b_H}{b_W} = 1.2 \; .$

TABLE 5

TEST DATA FOR FLAT PARELS WITH HAT-SECTION STIFFFENERS WITH $\frac{t_W}{t_S} = 0.63$, $\frac{h_W}{h_W} = 0.6$ [Rominal proportions are given in perentheses]

	0.59 .652 26.h 20.l .58 2.h8 (1.721) 32.h 35.0 36.7 1.626 0.59 .625 26.0 20.l .59 h.99 (1.721) 32.7 34.6 35.8 .790 0.59 .623 26.0 20.9 .60 7.51 34.8 .509 .039 .623 26.0 20.9 .60 12.52 27.1 .238 .040 .690 25.7 27.1 .63 h.2h .61 6.27 (1.880) 34.8 36.1 36.9 1.0h7 .040 .638 26.2 30.2 .61 6.27 12.58 32.4 33.2 33.1 34.8 36.1 36.9 1.0h7 .040 .612 25.4 30.2 .62 20.85 32.4 33.2 33.7 32.2 .040 .612 24.6 29.9 .62 20.85 26.5 .153												
	tw	T	bar	ън	*		i .	or	ľ	<u>P₁</u> <u>L/√6</u>			
(in.)	ļ	 	- CAL		(in.)	58	Opserved	Adjusted	4				
(0.040) .039 .039 .039	(0.63) .632 .625 .624	26.0	20.2 20.4 20.5 20.9	(0.6) .58 .59 .60	2.48 4.99 7.51 12.52	(1.721)	i		36.7 35.8 34.8 27.1	1.626 .790 .509 .238			
.040 .040 .040	.690 .638 .615 .612	25.7 26.2 25.4 24.6	27.1 30.2 30.6 29.9	.63 .61 .58 .62	į.	(1.880)		33.1 33.2		1.047			
039 040 039 040	.638 .634 .623 .630	26.5 25.8 26.1 25.4	40.5 40.0 41.1 40.2	.60 .62 .61 .62	5.90 11.72 17.69 29.32	(2.016)	29.6 27.5 28.1	30.0 27.6 29.4	31.0 30.8 30.0 26.5	.678 .339 .219 .117			
.039 .040 .041 .039	.623 .625 .630 .626	25.8 25.4 24.6 25.9	(60) 60.3 60.1 57.9 60.8	.60 .60 .60	9.31 18.56 27.87 46.43	(2.235)	15.5 14.0 14.8 15.2	16.0 14.0 13.8 15.6	24.5 24.4 24.5 23.7	.376 .188 .126 .073			
.040 .040 .040	.652 .631 .644	(35) 35.6 35.5 36.0 36.8	(20) 19.3 19.6 18.4 19.6	.54 .60 .61 .59	2.40 4.81 7.14 11.91	(1.585)	25.9 27.4 26.6	26.6 28.0 27.8	34.3 33.2 34.1 26.0	1.448 .701 .485 .222			
.040 .040 .040 .040	. 656 . 651 . 640 . 654	36.1 36.7 36.2 36.9	(30) 28.5 30.1 30.0 29.6	.59 .62 .60 .60	3.74 8.04 12.02 20.13	(1.725)	26.4 24.1 22.6	27.8 26.1 24.1	33.4 31.2 31.6 24.9	.986 .428 .290 .137			
.040 .039 .040 .039	656 644 648 636	36.8 37.0 36.4 35.9	(40) 39.8 39.6 39.6 39.7	.58 .62 .61	5.76 11.44 17.21 28.56	(1.848)	22.2 21.0 22.4 23.5	21.2 22.4 24.5	28.5 27.4 28.1 26.1	585 585 198 198			
.040 .043 .040 .043	.656 .684 .638 .696	36.6 36.2 35.4 35.8 (50)	(60) 59.2 55.0 60.0 55.2	.60 .59 .60	9.20 18.20 27.40 45.57	(2.053)	15.3 16.6 13.7 16.8	14.9 14.0 13.6 14.3	25.1 24.4 22.9 22.2	.330 .176 .110			
.040 .042 .041 .041	.646 .667 .656 .651	50.8 50.8 50.6 50.9	19.8 19.2 19.3 19.2	.60 .58 .62	3.80 7.67 11.60 19.35	(2.455)	18.5 16.0 15.2	19.1 16.5 15.5	30.5 30.2 22.6 6.1	.748 .566 .181 .029			
240. 040. 240.	.660 .651 .658	51.0 50.7 50.7 50.5	(30) 28.6 28.4 30.0 28.8 (40)	.64 .60 .61	4.86 9.72 14.59 24.28	(1.573)	17.2 15.9 17.7 18.5	18.0 16.4 18.2 18.9	30.3 30.1 27.8 19.7	.628 .311 .192 .082			
.043 .043 .042	.668 .666 .659 .644	50.0 50.1 48.8 49.2	37.4 37.7 37.7 37.4 38.4	.60 .59 .62 .60	6.21 12.47 18.66 31.14	(1.679)	18.0 15.8 17.3 19.3	18.0 15.9 16.4 18.7	28.0 28.2 27.9 21.6	.185 .243 .161 .075			
.042 .043 .043	.658 .648 .661 .653	49.8 49.0 50.8	56.8 57.4 56.4 58.6	.60 .60 .60	8.36 18.64 27.91 46.47	(1.863)	16.2 15.0 15.5 14.2	14.6 13.7 15.7 15.6	25.4 22.8 23.6 21.1	. 353 . 146 . 101 . 054			
.039 .039 .040 .045	. 620 . 622 . 630 . 723	(75) 76.4 76.8 75.6 76.8	(20) 20.2 20.3 19.6 17.6	.58 .58 .61 .61	3.06 5.12 8.17 12.23	(1.333)	10.5 8.2 8.6 9.9	10.9 8.6 8.8 10.4	25.8 25.1 24.1 20.6	.718 .418 .252 .143			
.040 .038 .040 .039	.628 .606 .614	74.6 75.8 74.8 74.3	(30) 29.7 30.4 30.4 31.0	.60 .60 .60 .58	5.32 8.84 14.15 21.24	(1.425)	8.3 9.8 9.0	8.2 10.0 9.7 8.9	24.9 25.0 24.1 19.2	.428 .258 .155 .083			
.040 .040 .040 .039	. 6일 . 6일 . 6일 . 612	75.4 75.2 74.8 75.0	40.8 40.8 40.8	.59 .58 .57 .60	7.69 12.88 20.59 30.86	(1.510)	9.0 7.9 9.7 8.9	9-1 7-9 8-9	23.6 23.9 23.4 20.5	.297 .179 .110 .064			
.040 .039 .041 .040	.633 .630 .632 .622	76.2 76.2 74.2 75.0	(60) 60.2 60.6 58.7 60.0	.60 .62 .66	12.70 21.28 33.95 50.81	(1.663)	9.8 9.2 10.4	10.1 10.3 9.0 10.4	20.4 20.0 20.2 17.6	.171 .100 .063 .037			

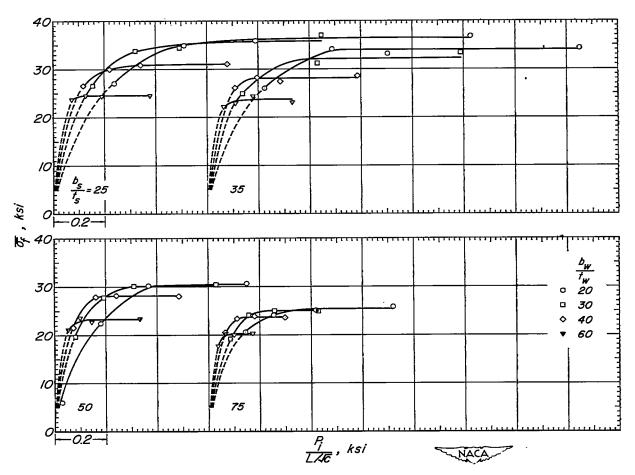


Figure 7.—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 0.63; \; \frac{b_H}{b_W} = 0.6.$

TEST DATA FOR FLAT PARELS WITH HAT-SECTION STIPPENERS WITH $\frac{t_W}{t_S}=0.63$, $\frac{b_H}{b_W}=0.8$ [Nominal proportions are given in parentheses]

	P .	roportion				re given in	1	Test	tata	
tw (in.)	tw ts	b <u>s</u>	b₩ bw	p ^M pH	L Vo (in.)	ŧ ts		or (s1)	F _r (kmi)	P ₁ 1/√0 (ks1)
(0.0kg) 040 039 039 039	(0.63) 634 631 628 629	(25) 26.0 25.6 25.7 25.9	(20) 20.4 20.2 20.5 20.5	(0.8) -78 -80 -78 -78	2.62 5.32 7.93 13.22	(1.715)	34.2 33.4	36.1 34.4	36.9 36.0 34.9 27.0	1.54,6 .74.3 .485
.040 .040 .039 .040	•708 •637 •637 •640	26.6 26.2 26.6 26.5	(50) 27.2 30.2 50.6 50.2	.78 .79 .78 .82	8.68 13.09 21.80	(1.861)	32.6 30.8 30.2	55.5 55.2 55.2	35.5 35.5 35.8	.981 .460 .303
.040 .041 .041	.670 .662 .652 .646	26.6 26.3 26.0 26.2	(40) 39.6 39.0 40.4	.80 .81 .80 .78	6.07 12.25 18.31 30.49	(1.981)	29.3 29.3	28.1 27.7	50.5 50.5 29.2	.637 .316 .204 .113
.040 .039 .040 .039	.628 .610 .626 .626	25.8 25.4 25.4 25.4	(60) 60.2 61.6 59.7 60.8	.80 .80 .80	9.62 19.23 28.70 47.90	(2.165)	13.2 13.6 14.4 13.8	13.5 14.4 14.1 14.1	22.8 22.3 22.3 20.7	.329 .161 .107
.040 .040	.714 .647 .634 .641	(35) 36.0 36.0 35.2 35.7	(20) 17.0 19.3 19.9 19.8	.86 .82 .80	2.45 4.97 7.59 12.56	(1.586)	24.0 25.2	25.4 25.5	8 500 H	1.441 .680 .439 .213
.041 .041 .041	•655 •679 •657 •652	36.2 36.8 36.5 36.7	29.4 29.4 29.4 29.4	.79 .80 .80 .81	12.58 13.58 4.34	(1.719)	25.2 25.0 22.8 24.3	26.6 25.1 24.7 26.2	52.5 52.5 51.0 25.4	.849 .421 .271 .155
.012 .012 .039 .040	-686 -642 -644	37.2 36.6 35.5	(40) 37•5 38•6 40•8 39•2	.80 .80 .80	5.96 11.86 17.84 29.90	(1.831)	22.2 24.5 21.3 23.5	24.6 26.4 21.9 25.4	29.0 28.5 27.1 25.9	.570 .280 .178
.043 .043 .043	.703 .689 .693 .701	36.0 36.1 35.8	(60) 54.5 55.2 56.4	.80 .78 .80	9.43 18.86 28.24 47.24	(2.010)	17.0 16.6 16.1 16.1	14.0 14.1 13.7 14.2	23.4 23.0 22.6 20.7	.319 .157 .103
.011 .012 .011 .011	.657 .656 .650 .656	(50) 48.5 50.4 50.2	(20) 19.6 19.4 19.5	•79 •74 •80 •78	3.88 7.88 11.87 19.73	(1.461)	14.9 18.8 17.6	14.1 10.2 17.7	30.9 30.1 24.7 10.2	.745 358 1948
.012 .011 .012 .012	655 658 645 645	49.4 50.0 50.2 49.5	(30) 28.6 29.3 28.6 29.0	.82 .80 .81 .79	5.08 10.07 15.15 25.20	(1.575)	18.7 15.2 15.1 18.8	18.2 15.2 15.3 18.5	30.7 29.1 28.8 20.1	.608 .291 .192 .080
.012 .011 .011 .012	.638 .634 .632 .644	48.6 49.4 49.4	(40) 58.2 59.2 59.1 58.4	.80 .80 .80	6.45 12.92 19.34 52.14	(1.676)	15.7 15.7 18.4	14.2 15.3 14.8 18.0	27.2 27.3 26.6 24.2	.152 1227 .1148 .081
.043 .041 .043 .042	.680 .629 .683 .646	50.6 48.8 50.4 50.8	(60) 55.4 55.4 57.6	.81 .80 .80 .82	9.65 19.26 28.85 48.05	(1.8批)	14.0 14.1 15.0 14.8	12.1 13.4 12.8 13.6	21.7 21.5 21.8 20.2	.265 .132 .089 .050
.012 .039 .037 .038	.658 .611 .581 .602	(75) 75.1 75.6 76.3	(20) 19.0 20.2 21.6 20.8	.81 .80 .80 .82	3.30 5.38 8.70 13.06	(1.340)	9.7 11.5 9.2 9.1	9.7 11.6 9.4 9.4	26.1 24.3 23.5 18.5	.679 .388 .231 .121
,039 .039 .040 .039	.596 .600 .613 .605	74.2 74.2 74.1 74.0	(30) 31.2 30.7 31.8 30.6	.78 .80 .76 .80	5.61 9.39 14.99 22.40	(1.455)	9.8 10.2 9.3	9.6 10.0 9.1	25.0 25.3 24.8 19.5	.408 .249 .152 .080
.040 .040 .040	.632 .620 .633 .636	76.6. 74.0 76.2 75.9	40.2 40.3 40.3 39.7	.80 .78 .78 .80	8.01 13.48 21.50 32.17	(1.516)	10.1 9.4 9.5 8.7	10.6 9.2 9.8 8.9	23.6 23.0 25.4 21.7	.286 .165 .106
040 059 040	.635 .613 .612 .623	76.6 75.0 74.8 75.8	60.9 61.2 60.9	.80 .80 .79	13.13 22.06 35.31 52.95	(1.661)	10.2 9.4 8.7 9.0	10.6 9.4 8.7 9.2	19.4 19.0 19.1 16.3	.157 .091 .058 .053

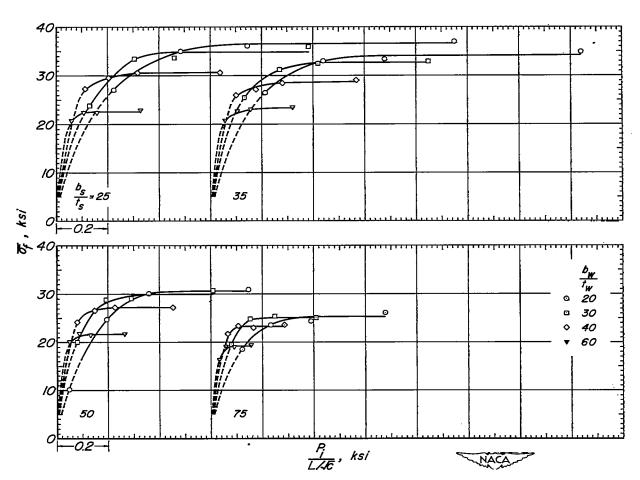


Figure 8.—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 0.63; \ \frac{b_H}{b_W} = 0.8.$

. . .

TABLE 7

TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{t_W}{t_S} = 0.63$, $\frac{b_H}{b_W} = 1.0$ [Kominal proportions are given in parentheses]

	Pz	opertion	of test	specime	ns			Test (lata	
t _w	t _w ts	bg tg	<u>p</u> ^R	p ^A p ^A	L Ve (in.)	t _s	I	or ksi) Adjusted	ਰ _ਵ (kei)	P ₁ L/76 (ks1)
(0.040) .040 .039 .039 .039	(0.63) .640 .629 .632 .643	(25) 26.4 25.6 26.2 26.4	(20) 20.2 20.4 20.5 20.4	(1.0) 1.00 1.00 .99	2.75 5.53 6.25 13.61	(1.711)	34.0 33.0 31.6	36.6 34.7 34.0	35.8 35.2 33.4 27.7	1.407 .698 .442 .220
.040 .039 .039 .043	.642 .629 .642 .692	26.1 25.8 26.8 26.4	(30) 30.1 30.6 30.2 28.2	1.00 .99 .99 .98	4.50 9.01 13.60 22.56	(1.645)	31.1 31.1	33.4 34.5	33.4 32.7 32.0 27.1	.577 .425 .275 .142
.040. 040. 040. 040.	.650 .648 .654 .643	26.6 26.3 26.0 25.5	(40) 40.1 40.0 39.1 40.0	1.00 1.00 1.00 1.00	6.36 12.56 15.88 31.38	(1.951)	27.3 25.6 26.4	27.5 26.2 25.5	28.2 28.3 28.0 24.4	.555 .281 .185 .097
.040 .039 .038 .039	.624 .626 .596 .620	25.7 25.8 26.0 25.4	60.4 60.4 63.3 61.4	.99 .99 1.00 1.00	9.50 19.71 29.49 49.14	(2.110)	12.4 12.3 11.7 12.5	12.4 12.5 13.1 13.1	21.2 20.8 20.2 19.0	.292 .145 .093 .052
.043 .042 .040 .041	.652 .660 .635 .663	(35) 35.2 36.0 35.9 36.2	(20) 17.8 19.1 20.0 18.6	1.07 .94 1.00 1.00	2.63 5.29 7.90 13.26	(1.555)	25.7 26.2	26.9 27.3	34.7 33.5 32.2 25.2	1.341 .643 .414 .193
.040 .040 .040 .040	.644 .649 .642 .648	36.1 35.2 36.3 36.1	(30) 31.1 25.5 30.2 29.2 (40)	.94 .99 .98 1.02	4.42 8.68 13.09 21.84	(1.713)	24.5 24.3 23.8	25.9 24.4 25.2	31.0 30.8 30.0 26.0	.769 .389 .251 .130
.040 .040 .042 .040	.635 .636 .640 .636	36.2 36.0 35.9 35.8	39.0 39.8 38.8 39.1	1.05 .99 1.00 1.02	6.12 12.28 18.57 30.75	(1.516)	21.6 24.0 21.5 20.3	23.0 25.2 22.6 21.2	24.7 26.6 26.5 25.0	.469 .252 .166 .095
.043 .043 .043 .043	.654 .699 .686 .690	34.2 36.2 35.4 36.1	(60) 54.0 555.6 555.6	1.01. .99 .98 1.00	9.70 19.34 29.01 47.84	(1.976)	13.4 14.4 14.1 12.4	11.4 11.9 11.7 10.6	21.7 21.4 21.4 19.1	.283 .140 .093 .050
.042 .042 .042 .041	.663 .676 .666 .664	(50) 50.3 51.0 51.2 51.2	(20) 19.2 19.4 19.2 19.5	.99 .98 1.00 .94	4.02 5.02 12.02 20.05	(1.467)	14.6 16.1 16.3	14.8 16.7 17.2	30.7 30.8 25.3 12.9	.717 .361 .198 .060
.041 .041 .042 .041	.642 .649 .634 .632	50.2 50.0 48.7 49.2	(30) 29.3 29.0 28.8 29.4 (40)	.98 1.00 1.00 .99	5.09 10.38 15.51 25.83	(1.578)	16.4 15.0 17.6 16.8	16.6 15.0 16.7 16.3	30.4 30.3 29.4 21.1	.603 .295 .191 .083
.041 .042 .042 .041	.644 .677 .662 .656	49.6 51.1 50.6 50.4	35.6 38.4 38.4 38.8 (60)	1.00 1.00 1.00 .99	6.62 13.27 19.54 33.13	(1.673)	14.2 15.5 15.2 16.0	14.0 16.2 15.7 16.2	25.8 26.0 26.3 22.1	.418 .210 .144 .071
.042 .041 .041 .042	.660 .655 .648 .628	50.8 50.2 51.1 48.0	57.5 58.2 59.4 57.3	1.01 1.00 1.01 1.01	9.85 19.75 29.66 49.39	(1.827)	13.1 12.1 13.1 12.5	12.2 11.6 13.3 11.6	20.0 19.3 19.5 18.1	.23/ .114 .077 .043
.045 .045 .039 .042	.692 .722 .610 .640	(75) 74.4 77.0 75.3 73.6	(20) 18.4 17.8 20.4 19.1	1.00 1.00 1.01 .98	3.38 5.78 9.20 13.76	(1.348)	11.0 9.5 12.8 9.5	10.8 10.0 12.9 9.4	26.2 27.0 23.6 19.9	.719 .403 .222 .125
.040 .040 .040 .039	.616 .611 .607 .630	74.4 73.5 73.4 76.6	(30) 30.0 29.9 30.2 31.1	1.00 1.00 1.00 .96	5.91 9.73 15.65 23.39	(1.440)	9.7 9.3 10.0 9.8	9.6 9.0 9.5 10,3	25. 8 26.0 25.4 20.8	.402 .246 .149 .082
.040 .040 .039 .040	.610 .624 .610 .619	73.6 74.5 74.0 73.2	39.9 39.8 40.6 39.6	1.00 1.00 .99 1,00	8.43 13.99 22.31 33.66	(1.521)	9.0 8.7 9.4 8.2	5.7 5.6 9.2 7.5	23.6 22.6 22.3 21.7	.272 .157 .097 .063
.039 .040 .039 .039	.624 .616 .624 .622	75.8 74.8 75.2 75.2	61.2 60.2 61.0 60.6	.99 1.01 1.00 1.01	13.67 22.80 36.46 54.70	(1.658)	9.6 8.2 6.0	9.5 5.2 5.6 5.1	18.1 18.1 15.2 14.5	.141 .084 .053 .029

~NACA__

-.

•

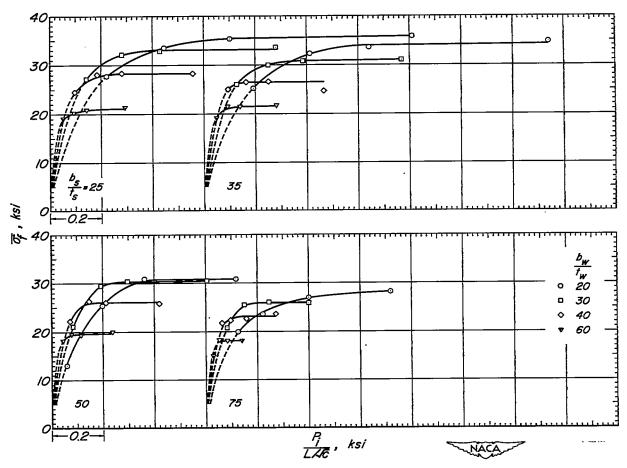


Figure 9.—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 0.63; \ \frac{b_H}{b_W} = 1.0.$

TABLE 8

TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFEMERS WITH $\frac{t_W}{t_S} = 0.65$, $\frac{b_H}{bw} = 1.2$ [Hominal proportions are given in parentheses]

	tw bw bw bw bw bw bw color <			18			Test :	Sata		
tw (in.)	च्छ	bs ts	₽# ₽#	b _H	1 Va (in.)	₹ t s		or (si) Adjusted	ਰ (kai)	P ₁ L/√0 (ks1)
(0.010) 040 039 040	(0.63) 638 640 628 638	26.2	20.0 20.5 20.4	1.20	2.87 5.74 8.63 14.29	(1.706)	34.0 31.1 32.3	36.3 33.4 34.6	36.1 34.9 34.7 27.6	1.374 .663 .439 .211
.039 .039 .040 .040	.626 .621 .636 .640	25.2	30.8 30.5 30.2 30.0	1.20	4.71 9.31 13.93 23.13	(1.830)	29.9	30.2	31.6 32.1 31.3 26.3	.786 .404 .263
i •039 l	.628 .644 .624 .638	26.2 26.2 25.6 25.7	47.0 40.8 40.4	1.16	6.47 12.84 19.30 32.15	(1.927)	21.0 22.6 20.4 20.4	21.8 21.7 20.8 21.2	25.9 26.1 25.6 22.1	450 164 185
040	.624 .620 .626 .621	25.4 25.4 25.8	1 60 6	1.19 1.19 1.20 1.21	10.03 20.10 30.11 50.22	(2.064)	10.2 10.0 8.0 6.4	10.2 10.1 8.0 6.8	19.9 19.7 19.1 13.9	.262 .129 .084 .036
015 011 012 010	.682 .665 .644	(35) 356.4 366.1	17.8 19.1 19.1 19.7	1.18	2.71 5.51 8.18 13.70	(1.590)	26.h 26.6	28.2 27.9	Nurun Gutterte Gibber	1.302 .634 .413 .198
.039 .040 .040	637 646 650 664	36.4 36.3 36.2	29.6 29.6 29.0 29.2	1.22	4.47 8.97 13.57 22.56	(1.708)	22.6 23.8 24.5 23.8	24.2 25.2 26.0 26.4	29.0 30.0 29.7 26.0	.710 .366 .239
.040 .040 .040	.667 .630 .611 .613	37.0 34.9 36.4 36.0	40.0	1.16	6.37 12.60 18.93 31.54	(1.803)	20.8 19.6 21.4 19.5	20.6 18.5 21.4 19.7	25.5 24.5 24.5	.453 .224 .149 .082
.040 .043 .040 .043	-643 -644 -646	34.8	59.1 59.1 55.1	1.19	9.92 19.73 29.72 49.52	(1.947)	9.9 10.1 9.7 10.3	9.8 9.5 9.6	19.1 20.3 18.8 17.7	.21.0 .128 .079 .045
.043 .043 .042	.650 .685 .676 .662	(50) 50.6 51.0 50.8 50.2	20.0 18.6 19.4 19.8	1.19 1.18	4.11 8.18 12.23 20.35	(1.472)	17.5 13.4 17.1	17.9 13.9 17.7	31.5 31.8 26.2 13.5	.721 .366 .202 .063
.011 .011 .011 .042	.627 .630 .617 .657	48.6 48.4 47.8 50.0	29.0 29.1 28.8 28.8	1.22 1.20 1.22 1.20	5.31 10.54 15.86 25.94	(1.580)	16.7 17.4 19.2 15.4	15.8 16.2 17.6 15.4	28.5 28.9 28.6 21.9	.543 .277 .182 .086
.042 .042 .041 .042	.653 .671 .640 .668	49.9 50.4 50.0 50.2	38.5 38.2 39.1 38.0	1.20	6.73 13.61 20.29 33.81	(1.670)	15.3 15.8 15.5	15.3 16.0 15.5	전.9 24.6 진.3 22.5	•395 •196 •128 •071
.041 .041 .041 .042	.646 .670 .661 .674	73.04	58.0 58.4 58.2	1.20	10.07 20.21 30.29 50.48	(1.813)	9.9 10.2 11.3 10.3	9.4 9.6 10.9 9.3	19.0 18.8 18.4 17.4	.219 .108 .071 .040
.039 .039 .039	.600 .601 .600	(75) 75.0 74.5 73.8 74.0	20.5 20.4 20.5 20.6	1.20	5.62 5.65 9.65 14.39	(1.355)	11.0 10.0 9.6 8.5	11.0	26.0 25.3 23.8 18.7	.623 .368 .214 .113
.040 .039 .039	.611 .608	74.4	29.8 50.6 31.8	1.23	6.06 10.16 16.18 24.32	(1.կկ6)	7.7 10.0 8.5 11.0	7.6 9.9 8.4 10.8	25.7 24.4 24.0 19.7	.392 .222 .137 .075
040 040	.60k .608 .620 .606	71.8 72.8 75.0 73.0	(40) 41.0 40.1 40.4	1.18 1.20 1.20 1.20	8.73 14.51 23.20 34.78	(1.525)	8.8 9.1 8.0 10.5	8.1 8.6 8.0 10.0	21.9 21.9 21.4 18.6	.21.5 .11.8 .090 .052
.040 .039 .039 .039	.635 .614 .604 .612	76.8 75.2 73.8 74.2	(60) 60.2 61.5 61.4 60.4	1.20 1.20 1.20 1.20	13.97 23.25 37.46 55.73	(1.656)	00000 10000	9.0 × 6	17.3 16.3 17.3 14.2	.131 .074 .049 .027

NAÇA,

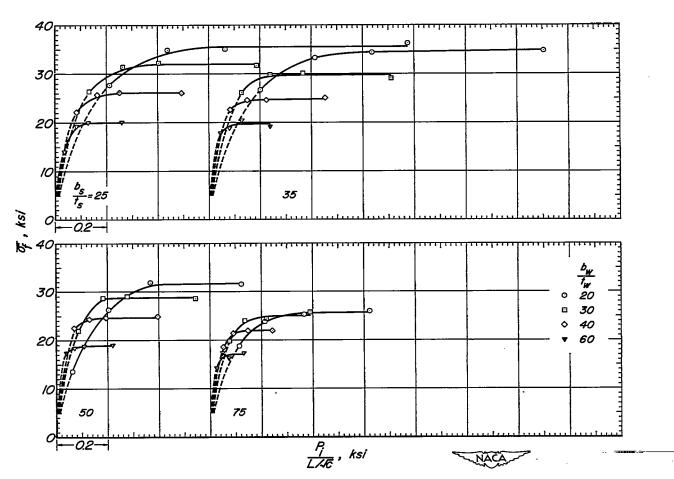


Figure 10:—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 0.63; \ \frac{b_H}{b_W} = 1.2.$

Table 9 Test data for flat panels with har-section stiffeners with $\frac{t_W}{t_S} = 1.00$, $\frac{b_H}{b_W} = 0.6$ [Hominal proportions are given in parentheaes]

	Pro	portions	of test	pesimen			T	Test	data	
t _y (in.)	tw ts	£2 p2	£A pA	pH pH	L Vo (in.)	€ ts		or (ksi) Adjusted	σ _p	P ₁ L/V6 (ks1)
(0.040 .039 .039 .039	(1.00) -953 -944 -952 -935	25) 24.2 24.2 24.4 24.0	(20) 20.0 20.2 20.2 20.4	(0.6) .61 .58 .63	4,23 7.03 11.20 16.78	(2.449)	37.0 38.4 31.7	35.5 37.6 30.7	39.7 39.1 32.9 20.0	0.918 .545 .288 .117
.040 .039 .039 .039	.944 .956 .954 .914	24.6 24.6 24.6 24.6	(30) 30.2 30.6 30.9 30.9	.60 .59 .60	6.51 11.33 15.20 27.16	(2.751)	17.7	 17.0	36.3 35.9 32.6 20.3	.586 .349 .197 .082
.039 .039 .039 .039	.944 .947 .941 .936	24.6 24.9 25.3 24.8	(40) 40.8 40.8 40.4 40.7	.60 .62 .60	9.37 15.68 25.02 37.54	(2.995)	25.6 25.3 27.9 19.2	29.5 26.2 28.4 17.4	30.7 30.8 30.4 21.7	.392 .235 .145 .069
.038 .039 .039 .039	.943 .953 .932 .942	25.4 25.6 24.6 24.8	(60) 62.6 61.5 62.0 60.9	.61 .60 .61	14.49 24.05 38.50 57.73	(3.369)	14.8 13.4 13.2 11.8	16.1 14.1 14.1 12.2	23.6 23.9 22.4 17.9	.219 .134 .078 .042
.039 .039 .041 .041	.982 .994 .976 1.033	(35) 32.4 32.7 31.1 32.0	(20) 20.8 20.3 20.0 19.3	.56 .56 .54 .59	4.07 6.85 10.91 16.37	(2.212)	29.1 29.0 30.6 19.7	25.8 25.9 25.4 16.4	37.1 35.7 31.6 20.4	.806 .459 .256 .110
.041 .040 .042	1.032 .974 1.004 1.030	32.6 31.0 32.2 31.4	(30) 29.8 30.0 30.2 28.6	.55 .60 .60	6.71 11.19 17.55 26.59	(2.491)	28.0 30.6 30.4 22.0	25.1 25.1 26.6 17.7	33.2 32.0 31.1 22.9	.493 .285 .174 .085
.040 .040 .041 .041	1.007 .994 1.026 1.035	32.4 32.2 32.4 32.3	(40) 41.2 39.8 35.8 38.8 (60)	.58 .60 .60 .61	9.30 15.49 24.85 37.23	(2.722)	26.7 25.6 26.3 22.5	23.4 22.2 23.1 26.2	25.4 25.2 25.2 23.3	.332 .198 .124 .068
.041 .041 .041 .040	1.040 1.025 1.015 1.025	32.5 33.2 32.6 33.6	58.3 58.7 59.0 60.8	.60 .59 .60 .60	14.42 23.98 38.40 57.57	(3.091)	13.8 14.9 15.2 16.0	13.1 14.2 14.7 16.4	22.1 22.3 21.4 19.9	.190 .115 .069 .043
.038 .038 .038 .039	.970 .952 .965 .949	(50) 51.2 50.4 50.7 49.2	(20) 20.9 21.0 20.6 20.6	.61 .59 .60	3.96 6.63 10.66 15.95	(1.974)	18.0 19.4 21.1 20.2	18.9 19.7 21.8 19.6	33.6 34.2 29.8 20.9	.671 .408 .221 .104
.040 .039 .040 .041	.986 .989 1.018 1.032	49.8 51.2 50.4 51.2	(30) 29.8 30.8 30.0 29.2	.63 .58 .60 .62	6.61 11.00 17.54 26.34	(2.219)	17.2 17.5 20.1 19.8	17.1 15.8 20.5 20.7	32.0 31.2 29.7 21.4	.430 .252 .150
.039 .041 .038 .042	.971 1.035 .956 1.049	50.7 50.6 49.0 50.2	(40) 41.0 35.7 41.8 38.2 (60)	.58 .59 .60 .62	9.19 15.34 24.53 36.71	(2.430)	17.9 18.4 19.1 20.3	18.4 18.9 18.4 20.5	27.5 28.6 26.0 22.2	.291 .182 .103
.040 .040 .041 .041	1.020 1.007 1.028 1.032	50.7 50.6 50.6 51.8	58.6 60.0 60.6 60.0	.62 .61 .58 .60	14.40 23.94 38.18 57.20	(2.780)	14.9 14.8 15.1 14.4	14.2 14.8 14.4 13.4	22.6 22.0 21.5 18.6	.175 .102 .064 .036
.041 .040 .041 .042	1.029 1.023 1.032 1.046	(75) 76.1 76.7 75.3 76.0	(20) 19.4 18.7 19.6 19.6	.62 .65 .60	3.78 6.34 10.11 15.04	(1.733)	8.2 11.5 11.4 9.5	5.4 12.0 11.5 9.7	30.3 29.7 28.1 19.7	.555 .325 .193 .091
.041 .043 .041 .042	1.042 1.091 1.045 1.072	76.8 77.2 76.8 77.5	29.2 29.2 29.2 29.6	.58 .58 .60 .59	6.40 10.63 16.98 25.38	(1.935)	10.4 10.3 8.9 14.4	10.9 10.9 9.3 15.4	30.0 31.0 27.9 19.3	.363 .225 .127
.041 .041 .043 .041	1.038 1.048 1.082 1.053	76.4 78.0 76.6 77.9	38.6 39.2 37.5 38.6	.59 .60 .58	5.55 15.00 23.50 35.56	(2.115)	12.7 9.6 11.5 10.9	13.2 10.5 12.0 11.8	27.2 26.8 27.5 19.8	.259 .151 .098 .047
.041 .041 .042 .042	1.047 1.050 1.052 1.064	77.3 76.5 76.6 77.7	59.0 57.7 57.4 57.6	.59 .60 .59 .60	14.03 23.54 37.68 56.55	(2.423)	16.5 11.8 9.7 13.6	17.5 12.4 10.2 14.6	21.6 21.6 21.3 17.6	.149 .089 .055 .030

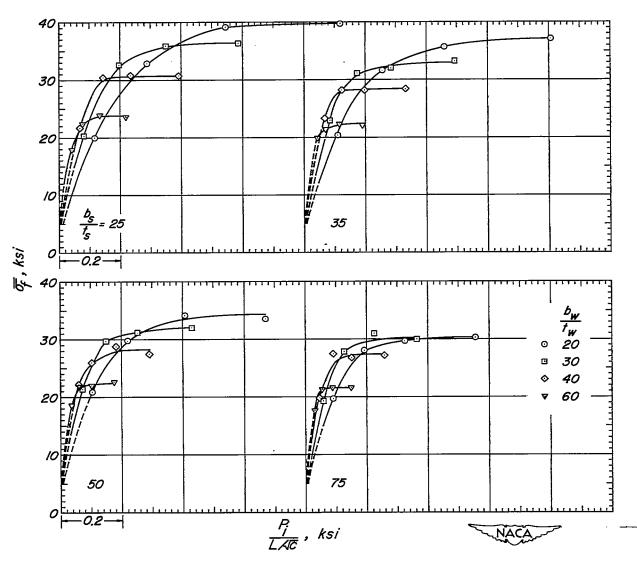


Figure II.—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 1.00; \ \frac{b_H}{b_W} = 0.6.$

TABLE 10 TEST DATA FOR FLAT PANELS WITH HAT SECTION STIFFENERS WITH $\frac{t_W}{t_S} = 1.00$, $\frac{b_H}{b_W} = 0.8$ [Mominal proportions are given in parentheses]

	Pro	portions	of test a	pecimen				Test	data	
tw	tw	ъs	Мq	b _H	<u>r</u> √6	ŧ	1	or	$\sigma_{\overline{t}}$	P1
(in.)	18	च्डे	ŧw.	2M	(in.)	र्ग्ड रिंड	Observed	(ksi) Adjusted	(ksi)	L/√6 (ks1)
(0.0L0) 039 039 039 039	(1.00) -932 -952 -929	(25) 25.4 24.7 25.5 24.7	(20) 20.8 20.3 21.2 21.0	(0.8) •77 •78 •75 •80	4.42 7.37 11.75 17.73	(2.416)	35.8 36.9 31.0	36.5 36.3 32.0	38.6 37.8 32.6 20.4	0.845 .495 .268 .111
.039 .039 .039 .039	.942 .932 .943 .926	24.6 24.5 24.6 24.6	(30) 30.6 30.6	.76 .79 .81 .82	7.05 11.78 18.74 28.29	(2.680)	33.4 19.6	30.7 16.1	35.4 35.6 34.6 21.5	.538 .322 .198 .082
.039 .038 .039 .039	.921 .934 .942 .942	24.1 25.0 25.2 24.9	(40) 41.4 11.8 40.8 40.4	.78 .81 .80 .80	9.71 16.21 25.96 38.94	(2.885)	27.3 26.1 27.4 20.6	29.0 27.4 25.8 18.8	29.2 28.9 29.0 21.7	.347 .206 .128 .064
.038 .039 .039 .039	•938 •931 •925 •932	25.0 25.2 21.0 25.0	60°5 67°5 61°6 (60)	.82 .80 .82	14.86 24.87 39.85 59.70	(3.180)	13.3 13.5 12.4 11.8	14.6 14.6 14.6	22.0 21.7 20.2 15.1	.188 .111 .064 .032
.010 .010 .039	1.010 .990 .974 1.012	(35) 33.2 32.6 31.4 32.9	(20) 20.2 20.0 20.6 20,2	.78 .77 .85	4.32 7.18 11.54 17.33	(2.199)	32.1 28.8 30.6	29.77 20.77 20.78	56.9 54.8 51.5	.751 .427 .239
-010 -010 -010	1.000 1.013 .997 1.021	31.8 33.0 31.5 32.2	(30) 30.3 30.3 29.8 29.3	.78 .80 .80	6.99 11.70 18.67 27.98	(2.450)	28.5 26.1 26.6 21.7	24.4 23.7 30.6 18.5	52.1 50.5 28.9 22.9	.150 .152 .158 .080
.041 .040 .040 .041	1.023 1.010 1.02h 1.036	51.7 53.4 53.2 52.4	(40) 39.6 40.8 48.4 (60)	.80 .80 .79 .83	9.62 16.09 25.73 38.64	(2.652)	19.9 24.9 25.7 21.5	21.3 27.7 26.8 24.4	26.6 27.3 26.4 22.4	.295 .180 .109 .061
.011 .011 .011	1.029 1.020 1.024 1.033	33.2 32.4 32.0 31.2	59.6 58.6 58.2 58.6	.81 .80 .78 .80	14.86 21.97 39.69 59.49	(2.956)	11.2 13.1 12.8 13.7	13.0 12.5 12.1 13.1	20.0 21.0 20.1 18.0	.159 .113 .060 .036
.038 .041 .038 .041	.956 1.030 .958 1.031	(50) 50.8 50.6 51.0 51.0	(20) 21.1 19.6 21.5 20.1	.76 .78 .76	4.24 6.99 11.22 16.85	(1.975)	21.2 19.2 19.9	22.0 19.6 20.6 20.7	33.8 35.4 28.6 21.3	.630 .377 .201 .100
.040 .038 .039 .039	•988 •980 •954 •984	149.9 50.8 48.0 50.2	(30) 31.2 31.4 30.8 30.3	.77 .81 .80 .81	6.88 11.46 18.31 27.54	(2.204)	19.1 17.3 19.1 20.0	19.0 17.9 17.6 20.2	50.7 50.5 50.0 21.2	.394 .253 .144 .068
.041 .042 .041 .041	1.033 1.018 1.011 1.018	50.6 48.8 50.0 49.4	(40) 39.2 38.2 38.9 39.2	.80 .80 .78 .80	9.58 15.92 25.46 38.13	(2.395)	17.7 20.0 18.6 20.4	18.1 19.0 18.7 19.9	27.7 28.0 26.7 21.4	.277 .168 .101 .054
.047 .040 .040	1.088 1.036 1.026 .984	53 • 7 52 • 1 51 • 3 48 • 8	(60) 58.0 58.8 59.8 57.8	.80 .82 .78 .79	14.84 24.68 39.52 59.19	(2.695)	14.1 13.6 14.5 14.5	15.1 15.0 14.4 13.5	20.9 20.7 20.4 16.9	.152 .090 .056 .031
.011 .011 .041 .011	1.044; 1.047 1.048 1.060	(75) 75.9 77.2 76.7 76.7	(20) 19.6 19.6 19.6	.81 .80 .80 .82	4.04 6.71 10.74 16.11	(1.743)	11.0 12.0 11.9 10.1	11.5 12.7 12.4 10.6	31.1 50.2 27.6 20.0	•537 •314 •179 •087
041 044 041 043	1.030 1.104 1.045 1.092	75.6 77.0 77.4 77.2	(30) 29.2 27.6 29.2 28.5	•78 •78 •79 •77	6.71 11.12 17.77 26.66	(1.882)	11.2 11.8 9.6 9.6	11.h 12.4 10.2 10.2	28.8 30.0 26.6 20.6	.32h .203 .113 .058
.017 .017 .017 .017	1.032 .996 1.062 1.052	77:1 74:1 77:8	(40) 200 200 200 200 200 200 200 200	.78 .79 .78 .78	9.38 15.50 24.91 37.35	(2.107)	11.9 11.5 8.5 11.8	12.6 11.3 9.0 12.7	25.6 25.2 25.5 20.4	.230 .137 .086 .046
.012 .012 .013 .012	1.052 1.058 1.038 1.052	76.4 76.4 76.6 76.2	57.6 57.2 59.2 57.8	.80 .80 .80 .79	14.52 24.39 39.06 58.48	(2.386)	9.8 13.0 11.8 13.6	10.1 13.5 12.3 14.0	20.6 20.6 19.1 15.8	.135 .080 .047 .026

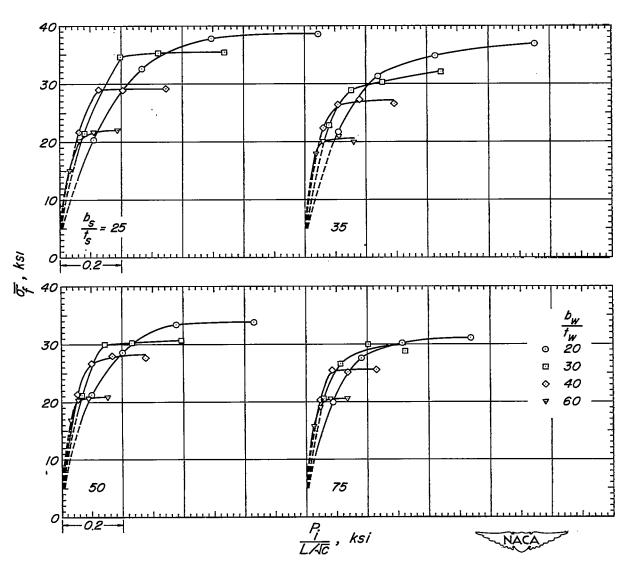


Figure 12.—Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 1.00; \; \frac{b_H}{b_W} = 0.8.$

TABLE 11

TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{t_W}{t_S} = 1.00$, $\frac{b_H}{b_W} = 1.0$ [Nominal proportions are given in parentheses]

	Prop	ortions o	r test ap	ecimens			Test data				
tw (in.)	tw ts	b _S	£A pA	pA pH	L Ve (in.)	₹ <u>₹</u>	Į.	or kei) Adjusted	ठ _र (ke1)	P ₁ L/V ⁰ (ke1)	
(0.040) .039 .039 .039	(1.00) .942 .934 .941	(25) 24.2 24.4 24.4 25.3	(20) 20.3 20.8 20.4 20.8	(1.0) .98 .96 1.00	4.61 7.63 12.28 18.40	(2,355)	37.4 35.6	35.9 34.8	36.0 37.7 33.0 21.2	0.787 .472 .257 .110	
.040 .039 .040 .038	.950 .928 .956 .922	25.0 24.3 24.4 24.4	(30) 30.0 30.8 30.1 31.0	1.00 1.00 1.00 1.00	7.31 12.16 19.44 29.25	(2.620)	30.2 30.8 	27.7 27.9 18.9	33.4 32.8 31.5 22.1	.478 .283 .170 .079	
.039 .039 .039 .039	.938 .943 1.026 .948	24.8 25.2 27.6 24.8	40) 40.0 41.0 40.8 40.2	1.01 1.00 1.00 1.00	10.01 16.68 26.71 39.97	(2.795)	24.8 21.0 22.0 21.0	22.3 16.7 26.2 19.3	27.4 27.5 26.2 22.5	.306 .184 .110 .063	
.039 .039 .039 .039	.944 .938 .944 .942	25.2 24.0 25.2 24.4	(60) 61.2 61.1 61.8 60.2	1.00 1.00 1.00 1.02	15.31 25.49 40.77 61.14	(3.038)	11.8 12.1 11.4 11.0	12.4 12.6 12.1 11.7	20.7 21.0 19.0 14.4	.164 .100 .057 .028	
.039 .041 .040 .041	.976 1.023 .986 1.030	(35) 32.0 32.5 31.0 32.2	(20) 21.3 19.8 21.6 19.5	.96 .98 .92 .98	4.52 7.51 12.07 18.09	(2.188)	30.4 30.0 20.0	26.4 26.2 17.0	34.5 34.5 30.9 21.3	.669 .402 .224 .103	
.040 .040 .040 .041	1.024 .998 1.042 1.038	32.7 32.7 33.5 31.8	(30) 30.4 31.2 30.3 29.1 (40)	.98 .96 .98 1.02	7.24 12.07 19.33 28.95	(2.416)	26.4 26.1 27.6 21.6	23.6 25.2 26.0 25.2	30.2 29.3 29.0 22.5	.404 .235 .145 .075	
.041 .039 .041 .041	1.020 .99# 1.020 1.022	32.3 33.0 33.0 31.0	38.8 40.4 39.2 38.5 (60)	1.00 1.00 1.00 1.03	9.95 16.61 26.50 39.74	(2.595)	19.3 19.3 18.4 20.1	21.5 21.7 20.3 23.1	25.5 25.1 25.0 21.1	.263 .157 .098 .055	
.039 .041 .040 .041	.949 1.032 1.021 1.038	31.8 32.0 32.4 31.8	62.0 57.9 59.2 58.9	.98 1.00 1.00 1.00	15.25 25.46 40.72 61.00	(2,551)	10.6 10.7 10.0 11.7	10.4 11.6 10.9 11.2	19.0 19.8 18.2 15.6	.142 .089 .051 .029	
.039 .039 .039 .040	.966 .975 .968 1.014	50.5 50.5 50.6	(20) 21.0 21.8 21.1 20.2	.97 .94 .96	4.43 7.31 11.71 17.64	(1.976)	15.2 21.4 19.1 20.5	19.0 21.5 19.5 21.1	32.5 33.4 29.7 22.1	.550 .361 .200 .099	
.041 .039 .038 .039	1.032 -978 -966 -938	50.6 50.6 46.4	(30) 29.0 30.8 31.2 30.7	1.00 1.00 .98 .98	7.15 11.87 18.97 28.45	(2,191)	17.0 19.7 18.2 20.1	17.4 19.7 18.7 15.5	30.8 29.8 27.7 22.4	.377 .220 .128 .069	
.041 .041 .041 .040	1.032 1.044 1.019 1.000	51.3 50.3 49.4 50.8	39.4 38.8 39.0 39.4	1.00 1.02 1.00 1.02	9.87 16.37 26.18 39.37	(2.364)	16.7 15.0 15.2 19.2	17.6 18.3 17.8 19.8	25.5 25.4 25.3 20.3	.244 .146 .091 .049	
.040 .041 .041 .041	1.004 1.038 1.044 1.036	51.4 49.8 50.4 50.6	61.1 58.2 57.9 58.5	1.02 1.00 1.99	15.20 25.34 40.50 60.72	(2.625)	12.7 13.1 13.1 12.6	12.9 12.7 12.2 11.8	19.7 20.0 19.2 15.2	.136 .083 .050 .026	
.042 .041 .042	1.061 1.054 1.077 1.056	(75) 77.6 77.5 76.8 77.4	(20) 19.7 19.6 19.1	.94 .97 .97	4.23 7.05 11.23 16.56	(1.753)	11.0 10.5 11.3 11.1	11.8 11.2 11.9 11.8	31.1 29.3 27.9 20.4	.515 .291 .174 .086	
.043 .041 .043 .045	1.106 1.046 1.092 1.086	77.5 76.6 77.5 76.4	(30) 28.2 28.8 25.0 25.4 (40)	.95 1.00 1.00 .98	7.00 11.54 18.46 27.65	(1.938)	10.2 10.2 11.7 11.6	10.9 10.7 12.6 12.1	28.8 26.9 26.9 21.0	.319 .181 .113 .059	
.039 .042 .041 .042	1.004 1.062 1.055 1.046	76.8 77.6 77.3 76.0	40.7 37.6 39.2 35.0	1.00 1.00 .99 1.01	9.65 16.00 25.71 38.52	(2.100)	10.3 8.5 10.1 10.5	10.8 9.4 10.8 11.2	23.3 23.9 24.2 19.5	.203 .126 .079 .042	
.041 .042 .042 .041	1.060 1.064 1.066 1.054	75.4 76.4 76.5 76.5	58.0 60.7 56.3 56.9	1.00 1.01 1.00 1.01	15.05 25.08 40.18 60.11	(2.355)	9.2 10.6 9.9 14.2	10.1 10.8 10.4 14.8	19.6 19.4 17.8 14.3	.123 .073 .042 .022	

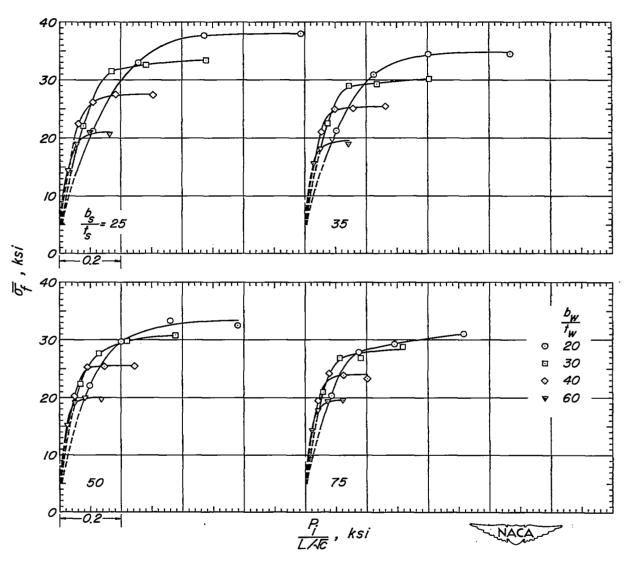


Figure 13.- Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 1.00; \; \frac{b_H}{b_W} = 1.0.$

Table 12 Test data for flat panels with hat-section stiffeness with $\frac{t_W}{t_S} = 1.00$, $\frac{b_H}{b_W} = 1.2$ [Nominal proportions are given in parentheses]

	Proportions of test specimens Test data									
					L			or		P1
tw (in.)	t _w	58 58	DW	p# pH	√c (in.)	<u>₹</u>		(ksi)	σ _e	1.√√€
(0.040) 038 039 039 039	(1.00) 914 934 928 948	(25) 2 24 .5 2 24 .8	(20) 21.2 21.8 21.6 20.6	(1.2) 1.16 1.12 1.12 1.23	4.76 7.89 12.68 18.92	(2.364)	35.0 54.6 31.7 18.6	33.6 33.0 30.1 18.6	36.7 35.7 32.6 20.2	0.729 .428 .245
.039 .039 .039 .039	•930 •943 •946 •938	25.0 25.7 25.5 24.6	(30) 32.8 30.4 30.4 30.4	1.15 1.19 1.22 1.22	7.49 12.50 19.95 29.86	(2.572)	27.0 24.9	25.1 23.1	31.6 31.1 29.3 22.5	.134 .256 .151
.038 .039 .039	.954 944 .940 .947	25.0 26.5 25.6 25.4	(40) 40.8 11.8 8.01 0.11	1.24 1.20 1.20 1.18	10.21 17.06 27.23 40.91	(2.722)	18.0 19.0 17.0 18.0	16.5 17.7 15.6 18.3	25.1 25.7 23.1 19.1	.268 .164 .092 .051
•039 •039 •039 •039	•931 •935 •946 •946	24.8 25.2 24.0 24.4	(60) 61.2 61.6 60.7	1.20 1.20 1.20 1.22	15.57 25.97 41.60 62.39	(2.926)	10.3 8.2 8.3 8.7	10.7 7.6 8.9 9.3	19.7 19.4 18.2 13.3	.118 .088 .051 .025
.040 .039 .040 .040	1.015 •997 •994 1.000	(35) 31.6 32.2 31.8 31.4	(20) 20.6 20.3 21.3 20.1	1.18 1.18 1.12 1.19	4.68 7.75 12.43 18.62	(2.178)	28.9 28.5 28.7 22.5	왕 .나 왕 . 9 왕 . 7 18 . 4	NN	.622 .367 .206 .109
.039 .040 .040	.992 1.000 1.001 1.028	32.6 33.1 33.2 32.7	(30) 50.8 32.2 30.0 29.4 (40)	1.18 1.08 1.20 1.20	7.43 12.41 19.81 29.73	(2.387)	20.6 21.5 20.2 21.4	23.4 23.0 24.2	28.9 28.3 27.4 22.4	.371 .218 .132 .072
.040 .039 .041 .041	994 984 1.025 1.018	31.0 32.6 32.6 32.4	41.2 40.8 39.6 39.2 (60)	1.18 1.19 1.19 1.20	10.17 16.92 27.15 40.72	(2,545)	14.5 15.5 16.3 19.1	14.0 17.1 18.2 18.5	24.1 23.1 23.2 19.6	.251 .139 .087 .049
.040 .041 .041 .042	1.004 1.040 1.025 1.024	33.0 32.2 31.0	60.1 58.5 59.0 58.6	1.19 1.20 1.20	15.58 25.98 41.56 62.24	(2 .7 67)	8.2 6.0 6.0	6.4 9.7 9.2 9.0	18.2 18.6 17.7 14.3	.129 .079 .047 .025
.038 .038 .058 .059	•976 •973 •954 •978	(50) (50) (50) (50) (50) (50) (50) (50)	(20) 21.0 22.2 21.4 20.3	1.18 1.12 1.17 1.19	4.58 7.59 12.18 18.28	(1.977)	18.0 19.8 16.7 19.5	19.2 21.0 17.0 19.5	31.9 32.0 30.1 22.5	•551 •554 •196 •097
.041 .041 .038 .039	1.014 1.020 •954 •930	50.2 50.2 49.5 48.2	(30) 28.8 30.6 31.0 31.0	1.22 1.14 1.20 1.20	7:35 12:08 19:56 29:28	(2.180)	17.9 18.6 18.1 20.7	17.5 18.8 17.7 19.2	29.9 29.5 27.2 21.2	.354 .213 .121 .063
.040 .040 .039 .041	.980 .942 .978 .966	49.0 47.4 49.6 47.3	40.2 40.5 40.8 39.0	1.20 1.22 1.20 1.22	10.13 16.82 26.85 40.21	(2.338)	20.2 17.4 17.0 18.4	19.4 15.7 16.8 16.5	24.0 25.7 23.0 19.2	.222 .132 .080 .045
.011 .010 .011 .011	.986 1.022 1.036 1.036	48.3 50.2 50.3 51.4	58.9 59.8 60.7 60.1	1.20 1.20 1.18 1.16	15.53 25.83 41.38 62.00	(2.572)	11.5 9.8 9.2 9.8	11.1 9.8 8.6 9.2	19.1 19.0 17.2 14.0	.127 .076 .043 .023
.011 .012 .011 .011	1.052 1.058 1.058 1.052	(75) 77.8 77.0 77.2 77.2	(20) 19.6 19.3 19.4 19.4	1.15 1.20 1.21 1.18	4.10 7.27 11.77 17.51	(1.762)	9.6 15.1 9.3 8.7	10.ls 13.8 9.9 9.2	50.5 29.2 28.3 20.5	.52l ₄ .283 .169 .083
.0\2 .0\1 .0\2 .0\1	1.066 1.047 1.062 1.052	76.9 76.7 76.3 77.4	(30) 28.6 29.7 28.6 29.0	1.20 1.18 1.20 1.20	7.17 11.88 19.00 28.57	(1.941)	8.7 10.5 11.4 11.2	9.2 11.0 11.8 11.9	28.1 27.7 25.2 19.0	.304 .181 .103 .052
.012 .012 .011 .011	1.068 1.060 1.040 1.049	77.5 77.4 76.5 77.8	(40) 28.5 28.5 28.6 28.8 (60)	1.18 1.18 1.19 1.18	9.87 16.41 26.43 39.58	(2.094)	11.0 8.4 8.5 10.3	11.8 9.0 8.8 11.1	23.2 22.9 22.4 17.4	.196 .117 .071 .037
.042 .040 .041 .042	1.049 1.015 1.040 1.056	77.4 77.0 75.2 76.2	57.5 60.2 56.8 57.7	1.18 1.20 1.22 1.20	15.61 25.55 40.97 61.63	(2.329)	8.4 8.5 9.0 7.1	9.0	18.6 17.8 17.4 12.3	.112 .065 .040 .019

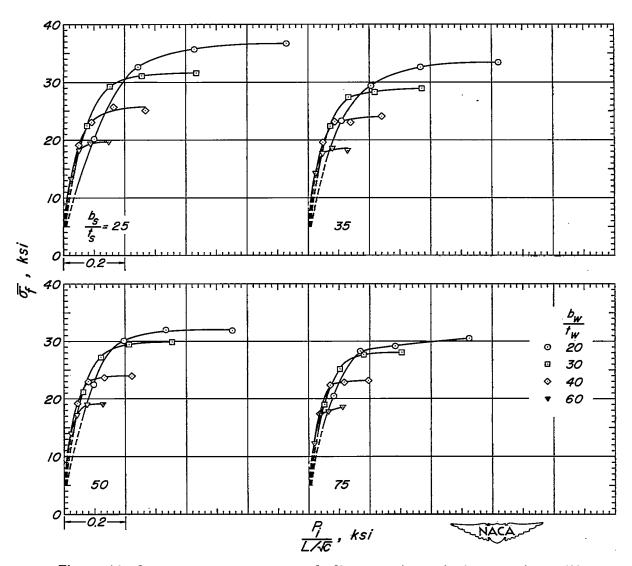


Figure 14.- Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 1.00; \ \frac{b_H}{b_W} = 1.2.$

TABLE 13

TEST DATA FOR FLAT PANELS WITH HAT SECTION STIFFENERS WITH $\frac{t_W}{t_g} = 1.25$, $\frac{b_H}{b_W} = 0.6$ Nominal proportions are given in parentheses

-	Prop		of test s			61 ten 10	F			· · · · · · · · · · · · · · · · · · ·
tw	t _w	bs ts		pM pH		Ē	Test data or or (ks1) or		data Fr	F ₁
(in.)	tg	t _S	₹W.	рW	Vo (in.)	ts	Observed	Adjusted	(ks1)	(ksi)
(0.040) .039 .039 .039 .039	(1.25) 1.204 1.203 1.207 1.198	(35) 33,0 34,0 33,0 33,0	(20) 20.0 20.2 19.8 20.2	(0.6) 64 60 65 62	4.36 7.28 11.59 17.37	(2.680)	34.9 36.7 19.3	32.4 35.3 18.0	38.2 38.0 33.2 20.8	0.749 -146 -245 -102
.040 .040 .040 .039	1.240 1.200 1.234 1.208	35.2 34.4 34.6 34.2	(30) 30.2 30.4 30.6	.62 .61 .60	6.91 11.58 18.47 27.53	(3.062)	34.3 34.8 26.8	33.6 30.6 27.9	55.55 55.55 52.6	.507 .299 .171 .077
.040 .040 .039 .039	1.219 1.212 1.222 1.199	55.4 55.1 54.2	(40) 40.4 40.4 40.5 40.0	.60 .60 .62	9•53 15•85 25•27 37•92	(3.375)	30.0 18.7	30.0	31.3 29.1 30.0 20.6	•355 •198 •128 •059
.039 .039 .038 .040	1.205 1.200 1.164 1.200	34.2 34.6 33.6	60.4 60.4 60.4 60.4 60.4	.60 .60 .60	14.46 24.11 38.54 57.85	(3.860)	14.6 14.5 13.0 13.0	15.1 14.5 15.2 13.3	25.2 25.1 22.5 18.5	.198 .118 .071 .039
•040 •040 •040	1.220 1.223 1.230 1.215	(50) 48.2 49.2 48.6 49.1	(20) 19.8 19.8 19.6 20.0	.62 .63 .63	4.27 7.11 11.33 17.00	(2.360)	21.1 25.2 28.5 19.4	22.8 24.5 27.1 21.5	36.6 36.1 30.5 21.2	.647 .383 .203 .094
.039 .039 .039 .039	1.188 1.184 1.187 1.204	48.6 48.8 48.4 49.0	30.4 30.4 30.4 30.3	.60 .60 .60	6.94 11.50 18.36 27.40	(2.710)	21.3 24.9 24.2 19.5	21.0 23.9 22.9 18.7	33.0 33.0 30.2 20.6	.112 .219 .112 .065
.039 .039 .039 .039	1.208 1.208 1.218 1.183	49•3 49•4 49•4 48•7	40.3 40.4 39.6 40.2	.60 .60 .60	9•47 15•79 25•22 37•76	(3.000)	23.3 23.6 19.9 20.4	23.2 23.0 19.4 18.9	29.2 28.9 27.2 22.1	.296 .176 .103
•039 •040 •040	1.197 1.202 1.216 1.202	49.6 49.4 49.0 47.6	(60) 60.8 60.4 60.6 60.6	.60 .60 .60	14.48 24.13 38.58 57.92	(3.470)	14.4 13.4 14.1 13.6	14.2 13.1 13.5 12.3	22.6 22.2 21.2 18.1	.173 .102 .061 .035

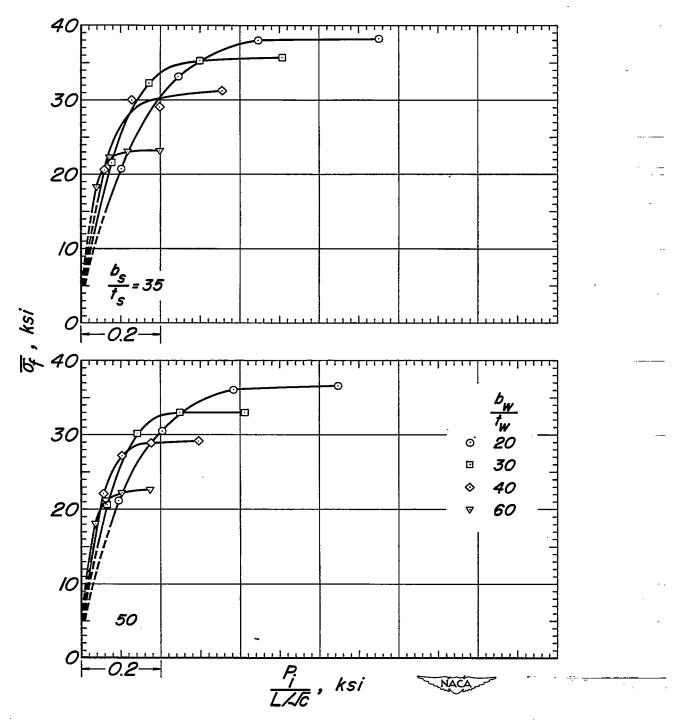


Figure 15.-Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S}$ =1.25; $\frac{b_H}{b_W}$ =0.6.

TABLE 14

TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{t_W}{t_S} = 1.25$, $\frac{b_H}{b_W} = 0.8$ [Nominal proportions are given in parentheses]

	Pro	portions	of test s	pecimens)			Test	data	
tw (in.)	t _W	bs ts	Day Say	р и	L √6 (1n.)	ts		or ksi)	ਰੁ	$\frac{P_1}{L/\sqrt{e}}$
(0.040) .040 .039 .039 .039	(1.25) 1.228 1.204 1.208 1.198	(35) 34.6 34.9 34.0 34.8	(20) 20.0 20.2 20.2 20.6	(0.8) 82 .77 .82 .78	4.58 7.60 12.16 18.15	(2.645)	35.2 19.3	34.7 19.2	37.5 56.4 32.5 21.2	0.693 .406 .226 .099
.039 .040 .039 .040	1.221 1.220 1.221 1.210	35.2 34.1 34.4 35.0	(30) 30.6 30.1 29.8 30.2	.80 .82 .82 .81	7.22 12.05 19.23 28.83	(2.985)	28.8 32.2 26.5	29.5 32.1 26.5	34.7 33.7 29.8 21.8	.458 .267 .148
.039 .039 .039	1.188 1.190 1.182 1.194	33.3 33.48 34.2	(40) 40.0 40.8 40.8	.81 .82 .82 .81	9.84 16.38 26.23 39.26	(3.250)	22.9 23.2 27.1 20.6	21.6 22.8 25.7 20.0	28.8 28.8 27.9 22.1	.304 .183 .111 .059
039 039 039 039	1.184 1.211 1.192 1.199	34.0 35.5 34.7	(60) 60.8 61.0 61.2 61.4	.81 .80 .81 .79	14.91 24.88 39.87 59.75	(3.640)	12.7 12.7 13.3 12.5	12.0 12.6 13.8 13.1	21.7 21.3 20.4 16.1	.169 .100 .060
.040 .039 .039 .039	1.195 1.174 1.200 1.193	(50) 47-4 48-6 48-6	(20) 19.8 20.2 20.4 20.2	.84 .83 .81	4.55 7.50 11.97 17.86	(2.352)	25.5 25.3 25.3 21.2	23.3 23.0 31.1 20.0	35.7 35.8 30.8 22.1	.590 .553 .194 .093
.040 .040 .039 .039	1.216 1.198 1.208 1.199	48.2 47.8 49.6 49.6	(30) 30.2 30.9 30.0 30.6	.80 .80 .80	7.19 11.94 19.15 28.62	(2.672)	25.6 26.8 25.2 19.5	25.2 24.8 24.7 19.3	32.4 32.1 29.6 21.0	.386 .230 .132
.039 .039 .040 .039	1.202 1.193 1.227 1.212	149.2 148.14 50.6 149.8	(40) 40.8 39.8 39.6 40.2	.80 .82 .80 .81	9.84 16.33 26.11 39.12	(2.930)	20.9 21.1 20.5 19.6	29.4 28.6 21.0 19.4	27.7 27.5 26.5 20.7	.264 .158 .095
.040 .040 .039 .040	1.222 1.189 1.184 1.169	48.9 49.2 48.6 47.3	60.8 60.7 61.1 61.5	.80 .80 .80 .79	14.96 24.92 39.90 59.82	(3.320)	13.7 11.3 10.2 12.0	15.1 10.3 9.8 10.8	21.0 20.7 19.3 16.4	.11.9 .088 .051 .029

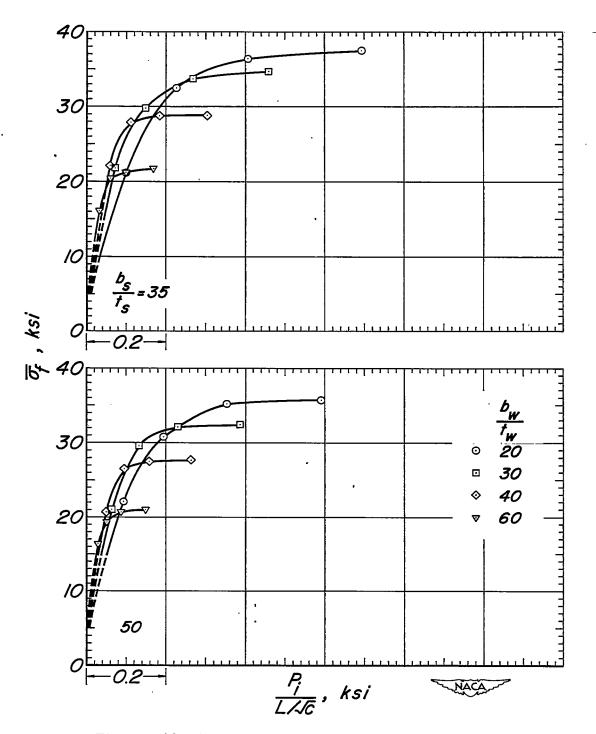


Figure 16.-Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S}$ =1.25; $\frac{b_H}{b_W}$ =0.8.

TABLE 15

TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{t_W}{t_S} = 1.25$, $\frac{b_H}{b_W} = 1.0$ [Nominal proportions are given in parentheses]

	Pron	ortions o								
—	Frop	OL FIGUR C		hecrmous	T	,		Test	data	r
tw (in.)	tw ts	t _s	b _W	ρ ^Α	L V c (in,)	ŧ	0	or (s1)	$\overline{\sigma}_{\mathbf{f}}$	P ₁ L/√6
				-	· · · · · · · · · · · · · · · · · · ·	8	Observed	Adjusted	(ksi)	(ksi)
(0.040) .039 .039 .039	(1.25) 1.214 1.204 1.190 1.198	(35) 34.3 35.1 35.0 34.6	(20) 20.4 20.5 20.4 21.0	(1.0) 1.00 .98 .99 .96	4.74 7.59 12.61 15.57	(2.617)	32.7 30.8 20.2	33.0 29.6 18.9	36.6 35.7 32.4 21.2	0.647 .378 .215 .094
.039 .039 .039 .039	1.193 1.223 1.216 1.201	34.8 35.1 35.2 34.0	(30) 30.6 30.1 30.3 30.4	.98 1.04 1.01 1.00	7.46 12.44 19.84 29.70	(2.920)	27.5 25.2 28.3 20.7	26.3 26.2 28.9 19.6	32.7 32.8 29.8 22.2	.410 .247 .140 .070
.039 .039 .039 .039	1.195 1.180 1.193 1.212	34.4 34.6 34.0 33.8	(40) 40.9 40.6 40.8 39.3	1.00 1.02 1.01 1.02	10.07 16.52 26.93 40.35	(3.150)	13.9 18.0 17.9 16.9	13.8 16.9 18.0 16.8	26.6 26.1 25.2 21.5	.266 .156 .094 .054
.039 .040 .039 .040	1.212 1.210 1.200 1.215	34.2 33.6 34.2 34.2	(60) 60.6 60.0 60.8 60.1	1.02 1.00 1.00	15.35 25.50 40.82 61.22	(3.472)	3040 5099	5.3 5.0 9.0 9.0	20.0 20.2 15.7 14.5	.145 .055 .051 .026
.039 .040 .040 .039	1.200 1.210 1.215 1,200	(50) 45.6 49.4 49.6	(20) 20.2 20.0 19.8 20.5	1.04 1.04 1.00 -97	4.74 7.79 12.43 18.63	(2.348)	24.1 25.5 24.3 19.0	22.5 24.4 23.7 15.4	34.0 33.4 29.1 20.9	.538 .322 .176 .084
.039 .039 .039 .039	1.145 1.196 1.203 1.198	46.6 48.8 48.8 48.2	(30) 30.6 30.6 29.5 30.8	1.01 .99 1.02 1.00	7.44 12.35 19.68 29.53	(2.640)	25.0 23.7 24.8 19.8	22.2 22.5 23.5 15.5	31.4 31.0 28.3 20.9	.356 .212 .122 .060
.040 .040 .039 .039	1.225 1.217 1.203 1.201	49.9 49.1 51.9 50.0	(40) 40.0 40.2 41.4 39.4	1.00 1.00 .97 1.02	10.06 16.52 26.85 40.30	(2.570)	16.2 17.5 17.2 16.1	16.2 16.7 16.4 15.5	25.8 25.6 23.7 20.8	.235 .140 .081 .047
.040 .040 .040	1.232 1.214 1.196 1.204	49.9 49.1 49.4 48.5	60.7 60.4 60.2 60.8	.99 1.20 1.00 -97	15.34 25.60 40.85 61.30	(3.200)	9.3 11.1 9.5 10.8	9.2 16.1 9.2 10.4	19.8 19.8 18.1 14.5	.133 .079 .045 .024

-NACA --

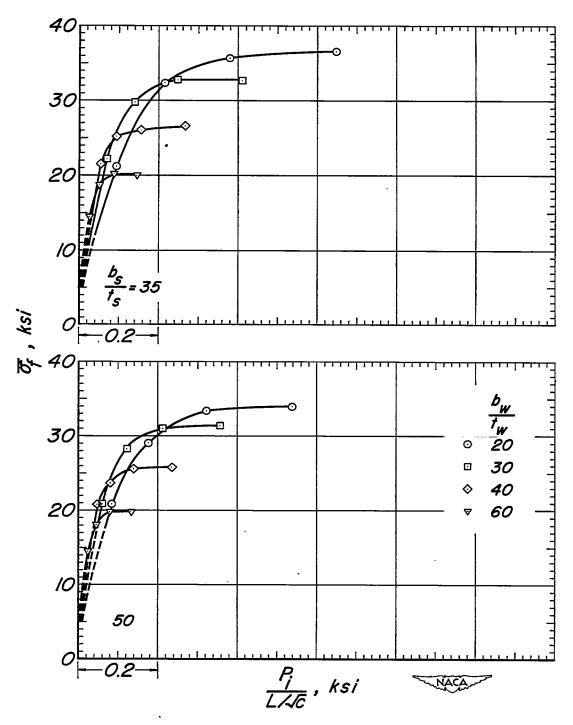


Figure 17.-Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S} = 1.25$; $\frac{b_H}{b_W} = 1.0$.

TABLE 16

TEST DATA FOR FLAT PANELS WITH HAT-SECTION STIFFENERS WITH $\frac{b_W}{b_S} = 1.25$, $\frac{b_H}{b_W} = 1.2$ [Nominal proportions are given in parentheses]

Γ'	Pron	ontions o					T CHOLD			
	reop	OF CIONS C	of test s	pecimens	<u></u>			Test	data	,
t _w (in.)	t _w ts	<u> </u>	D _M	b _H	<u>L</u> √o (in.)	€ E 8	l .	er (si)	ਰੂ (ksi)	P ₁ L/√o (ksi)
(0.040) .040 .040 .037 .040	(1.25) 1.207 1.200 1.140 1.204	(35) 35.0 34.8 34.8 34.6	(20) 20.2 20.0 21.5 20.0	(1.2) 1.20 1.20 1.20 1.21	4.89 8.08 13.02 19.40	(2.595)	26.1 32.8 30.6 21.1	25.2 31.3 30.4 20.5	34.8 34.7 31.2 22.6	0.591 •357 •199 •097
.040 .039 .039 .039	1.202 1.192 1.190 1.182	34.8 33.3 33.3 33.2	(30) 30.3 29.8 29.9 30.4	1.19 1.22 1.23 1.23	7.65 12.68 20.31 30.44	(2.868)	19.5 21.6 20.4	18.3 20.6 19.6	31.3 31.7 29.6 21.8	.376 .230 .134 .066
.039 .039 .039 .039	1.188 1.192, 1.238 1.193	33.45 33.45 34.4	(40) 39.6 40.2 39.8 39.7	1.24 1.21 1.25 1.25	10.34 17.23 27.58 41.29	(3.070)	19.8 19.9 14.6	20.7 20.4 14.5 13.5	25.0 24.6 23.2 18.8	.237 .140 .083 .045
•040 •039 •039 •040	1.212 1.21/ ₁ 1.222 1.21/ ₄	34.2 33.4 35.4 34.6	(60) 59.6 60.6 61.4 61.0	1.21 1.20 1.18 1.18	15.65 26.05 41.67 62.44	(3.340)	9.1 9.1 8.1 8.2	9.1 9.6 8.2 8.2	19.2 19.1 17.3 13.6	.151 .078 .044 .025
.039 .039 .040 .039	1.184 1.214 1.194 1.212	(50) 48.4 48.3 48.3 50.1	(20) 20.0 20.0 20.1 20.2	1.24 1.21 1.19 1.20	4.85 8.02 12.77 19.21	(2,340)	25.7 25.8 25.5 19.0	21 -1 21 -1 21 -2 18 -8	35.0 33.3 29.5 21.2	.541 .311 .173 .083
•039 •039 •039 •039	1.186 1.198 1.200 1.202	48.4 49.4 50.0 48.8	(30) 30.7 30.1 30.2 30.6	1.20 1.21 1.20 1.19	7.58 12.64 20.23 30.30	(2.615)	18.7 19.9 20.8 18.6	18.1 18.5 19.6 17.7	29.6 29.4 27.3 20.3	•327 •194 •113 •056
.040 .039 .040 .040	1.182 1.202 1.212 1.178	47.1 49.0 49.2 48.2	(40) 40.2 40.4 40.0 40.0	1.20 1.20 1.20 1.20	10.33 17.19 27.43 41.12	(2.820)	11.7 12.8 11.0 14.0	11.0 12.3 10.6 12.5	24.4 24.0 22.0 18.0	.213 .126 .072 .039
.039 .039 .039 .040	1.209 1.215 1.211 1.208	49.5 49.8 49.2 50.3	60.6 60.6 60.4 60.4	1.20 1.20 1.20 1.20	15.71 26.10 41.75 62.46	(3.115)	5.1 9.6 7.6 7.6	5.0 9.4 8.3 7.7	18.3 18.5 17.2 13.1	.116 .071 .041 .021

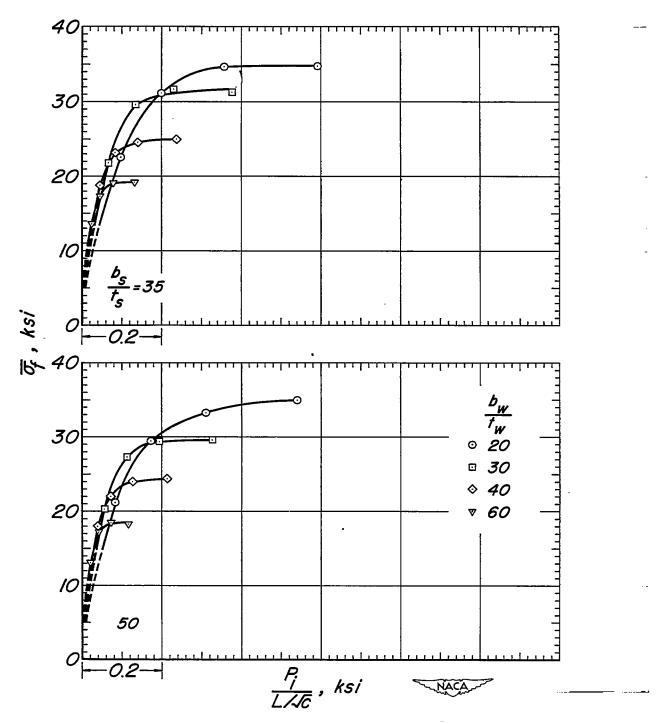


Figure 18.-Compressive strength of flat panels with hat-section stiffeners. $\frac{t_W}{t_S}$ =1.25; $\frac{b_H}{b_W}$ =1.2.